切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (12) : 1150 -1154. doi: 10.3877/cma.j.issn.1674-0785.2024.12.012

综述

远端缺血预处理器官保护与年龄相关性差异研究进展
李杨春雪1,2, 高杰3,(), 郭文治2, 刘智3   
  1. 1. 030001 太原,山西医科大学麻醉学院
    2. 100700 北京,解放军总医院第七医学中心麻醉科
    3. 100700 北京,解放军总医院第七医学中心骨科
  • 收稿日期:2024-12-05 出版日期:2024-12-15
  • 通信作者: 高杰
  • 基金资助:
    北京市科技新星计划(Z181100006218031)

Progress in research of age-related differences in organ protection by remote ischemic preconditioning

Yangchunxue Li1,2, Jie Gao3,(), Wenzhi Guo2, Zhi Liu3   

  1. 1. Anesthesiology College of Shanxi Medical University,Taiyuan 030001, China
    2. Department of Anesthesiology, The Seventh Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100700, China
    3. Department of Orthopedics, The Seventh Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100700, China
  • Received:2024-12-05 Published:2024-12-15
  • Corresponding author: Jie Gao
引用本文:

李杨春雪, 高杰, 郭文治, 刘智. 远端缺血预处理器官保护与年龄相关性差异研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1150-1154.

Yangchunxue Li, Jie Gao, Wenzhi Guo, Zhi Liu. Progress in research of age-related differences in organ protection by remote ischemic preconditioning[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(12): 1150-1154.

远端缺血预处理是指在人体重要器官的远端肢体实施短暂的缺血再灌注来保护器官的方法,虽然其对重要器官保护的有效性和安全性在部分临床研究和动物实验中得到证实,但其临床效果仍然存在较大争议。RIPC的保护效果随着年龄的增长而减弱,因此有必要进一步研究RIPC与年龄的相关性及其机制,以更清楚地了解其潜在治疗应用前景,并为临床患者转化提供重要依据。本文从动物实验和临床试验两方面对远端缺血预处理的年龄相关性差异及其潜在的治疗应用前景进行综述。

Remote ischemic preconditioning (RIPC) refers to the method of implementing transient ischemia-reperfusion in the distal limb to human vital organs to protect organs. Although its effectiveness and safety in the protection of vital organs have been confirmed in some clinical studies and animal experiments,its clinical effect is still controversial. The protective effect of RIPC weakens with age. Therefore, it is necessary to further study the correlation between RIPC and age as well as the underlying mechanism to better understand its potential therapeutic application prospects and provide an important basis for clinical transformation. This article reviews the age-related differences and potential therapeutic prospects of remote ischemic preconditioning based on animal experiments and clinical trials.

1
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium [J]. Circulation.1986 Nov;74(5):1124-1136.
2
Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion [J]. Circulation, 1993, 87(3): 893-899.
3
Gho BC, Schoemaker RG, Duncker DJ, et al. Myocardial protection by brief ischemia in noncardiac tissue [J]. Circulation, 1996, 94(9):2193-200.
4
Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit [J]. Circulation. 1997 Sep 2;96(5):1641-1646.
5
Pell TJ, Baxter GF, Yellon DM, et al. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels [J]. Am J Physiol, 1998, 275(5): H1542-H1547.
6
Siedek F, Persigehl T, Mueller RU, et al. Assessing renal changes after remote ischemic preconditioning (RIPC) of the upper extremity using BOLD imaging at 3T [J]. MAGMA, 2018, 31(3): 367-374.
7
An JQ, Cheng YW, Guo YC, et al. Safety and efficacy of remote ischemic postconditioning after thrombolysis in patients with stroke [J].Neurology, 2020, 95(24): e3355-e3363.
8
Mieszkowski J, Stankiewicz BE, Kochanowicz A, et al. Remote ischemic preconditioning reduces marathon-induced oxidative stress and decreases liver and heart injury markers in the serum [J]. Front Physiol, 2021, 12: 731889.
9
Filaretova L, Komkova O, Sudalina M, et al. Non-invasive remote ischemic preconditioning may protect the gastric mucosa against ischemia-reperfusion-induced injury through involvement of glucocorticoids [J]. Front Pharmacol, 2021, 12: 682643.
10
Orlandi M, Masi S, Bhowruth D, et al. Remote ischemic preconditioning protects against endothelial dysfunction in a human model of systemic inflammation: a randomized clinical trial [J].Arterioscler Thromb Vasc Biol, 2021, 41(8): e417-e426.
11
Halapas A, Kapelouzou A, Chrissoheris M, et al. The effect of Remote Ischemic Preconditioning (RIPC) on myocardial injury and inflammation in patients with severe aortic valve stenosis undergoing Transcatheter Aortic Valve Replacement (TAVI) [J]. Hellenic J Cardiol,2021, 62(6): 423-428.
12
Lang JA, Kim J, Franke WD, et al. Seven consecutive days of remote ischaemic preconditioning improves cutaneous vasodilatory capacity in young adults [J]. J Physiol, 2019, 597(3): 757-765.
13
Wahlstrøm KL, Bjerrum E, Gögenur I, et al. Effect of remote ischaemic preconditioning on mortality and morbidity after noncardiac surgery: meta-analysis [J]. BJS Open, 2021, 5(2): zraa026.
14
Zheng L, Han R, Tao L, et al. Effects of remote ischemic preconditioning on prognosis in patients with lung injury: A metaanalysis [J]. J Clin Anesth, 2020, 63: 109795.
15
Lang JA, Kim J. Remote ischaemic preconditioning-translating cardiovascular benefits to humans [J]. J Physiol, 2022, 600(13): 3053-3067.
16
Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death [J]. Circ Res,2020, 126(2): 280-293.
17
Zhang CX, Cheng Y, Liu DZ, et al. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats [J]. J Nanobiotechnology, 2019, 17(1): 18.
18
Pertiwi KR, Hillman RM, Scott CA, et al. Ischemia reperfusion injury produces, and ischemic preconditioning prevents, rat cardiac fibroblast differentiation: role of KATP channels [J]. J Cardiovasc Dev Dis,2019, 6(2): 22.
19
Wang Z, Wu L, Xu J, et al. Limb ischemic postconditioning alleviates postcardiac arrest syndrome through the inhibition of mitochondrial permeability transition pore opening in a porcine model [J]. Biomed Res Int, 2020, 2020: 9136097.
20
Costa AD, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT [J]. Am J Physiol Heart Circ Physiol, 2008, 295(2): H874-H882.
21
Liu X, Cao L, Zhang T, et al. Effect of remote ischemic preconditioning in patients undergoing hepatectomy with portal triad clamping: a randomized controlled trial [J]. Anesth Analg, 2019,129(6): 1742-1748.
22
Meybohm P, Bein B, Brosteanu O, et al. A multicenter trial of remote ischemic preconditioning for heart surgery [J]. N Engl J Med, 2015,373(15): 1397-1407.
23
Liang F, Liu S, Liu G, et al. Remote ischaemic preconditioning versus no remote ischaemic preconditioning for vascular and endovascular surgical procedures [J]. Cochrane Database Syst Rev, 2023, 1(1):CD008472.
24
Abete P, Ferrara N, Cioppa A, et al. Preconditioning does not prevent postischemic dysfunction in aging heart [J]. J Am Coll Cardiol, 1996,27(7): 1777-1786.
25
Lee TH, Yang JT, Lin JR, et al. Protective effects of ischemic preconditioning against neuronal apoptosis and dendritic injury in the hippocampus are age-dependent [J]. J Neurochem, 2020, 155(4): 430-447.
26
Abete P, Ferrara N, Cacciatore F, et al. Angina-induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart? [J]. J Am Coll Cardiol,1997, 30(4): 947-954.
27
Della-Morte D, Cacciatore F, Salsano E, et al. Age-related reduction of cerebral ischemic preconditioning: myth or reality? [J]. Clin Interv Aging, 2013, 8: 1055-1061.
28
van den Munckhof I, Riksen N, Seeger JP, et al. Aging attenuates the protective effect of ischemic preconditioning against endothelial ischemia-reperfusion injury in humans [J]. Am J Physiol Heart Circ Physiol, 2013, 304(12): H1727-H1732.
29
Lee TM, Su SF, Chou TF, et al. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty [J]. Circulation, 2002,105(3): 334-340.
30
Behmenburg F, Heinen A, Bruch LV, et al. Cardioprotection by remote ischemic preconditioning is blocked in the aged rat heart in vivo [J]. J Cardiothorac Vasc Anesth, 2017, 31(4): 1223-1226.
31
Heinen A, Behmenburg F, Aytulun A, et al. The release of cardioprotective humoral factors after remote ischemic preconditioning in humans is age- and sex-dependent [J]. J Transl Med, 2018, 16(1):112.
32
Ekeloef S, Gundel O, Falkenberg A, et al. The effect of remote ischaemic preconditioning on endothelial function after hip fracture surgery [J]. Acta Anaesthesiol Scand, 2021, 65(2): 169-175.
33
Zhou C, Bulluck H, Fang N, et al. Age and surgical complexity impact on renoprotection by remote ischemic preconditioning during adult cardiac surgery: a meta analysis [J]. Sci Rep, 2017, 7(1): 215.
34
Herrod PJJ, Lund JN, Phillips BE. Time-efficient physical activity interventions to reduce blood pressure in older adults: a randomised controlled trial [EJ]. Age Ageing, 2021, 50(3): 980-984.
35
高山, 董有静. 老年外科患者虚弱研究进展 [J/OL]. 中华临床医师杂志:电子版, 2023, 17(3): 343-348.
36
Wojtovich AP, Nadtochiy SM, Brookes PS, et al. Ischemic preconditioning: the role of mitochondria and aging [J]. Exp Gerontol,2012, 47(1): 1-7.
[1] 中华医学会器官移植学分会. 肝脏体外机械灌注临床应用指南[J/OL]. 中华移植杂志(电子版), 2024, 18(06): 334-345.
[2] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[3] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[4] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[5] 汪子涵, 张瑾, 肖飞, 梁朝阳. 常温体外肺灌注技术治疗肺缺血再灌注损伤的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 48-54.
[6] 杨莎莎, 张毛为, 孙宜田, 刘亚南, 位娟, 魏建, 陈碧. 结缔组织疾病相关间质性肺病并发小气道功能障碍临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 738-743.
[7] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[8] 李佳莹, 王旭丹, 梁雪, 张雷, 李佳英. 1990~2021年中国结直肠癌死亡趋势分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 274-279.
[9] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[10] 张阳, 罗莎莎, 邹文军. 年龄相关性黄斑变性分子机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 240-246.
[11] 李新星, 方晏红, 陈会振, 张蓝月, 刘涵. 维生素D与眼病关系的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 366-370.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[14] 张耕毓, 唐冲. 胸廓入射角不是一个恒定的形态学参数——一项基于中国无症状人群的横断面研究[J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1058-1063.
[15] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
阅读次数
全文


摘要