切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (01) : 58 -67. doi: 10.3877/cma.j.issn.1674-0785.2025.01.009

基础研究

基于免疫和代谢相关基因构建头颈部鳞状细胞癌预后模型
王海旭1, 袁芳2, 程华中3, 戴俊1, 杨惠明1, 宋红毛1, 徐敏4, 李硕1,(), 怀德1,()   
  1. 1. 223022 江苏淮安,徐州医科大学附属淮安医院耳鼻咽喉头颈外科
    2. 223302 南京,南京中医药大学附属淮安中医院中心实验室
    3. 223600 江苏宿迁,江苏省沭阳县中医院耳鼻喉科
    4. 223022 江苏淮安,徐州医科大学附属淮安医院影像科
  • 收稿日期:2024-08-15 出版日期:2025-01-15
  • 通信作者: 李硕, 怀德
  • 基金资助:
    淮安市基础研究计划(联合专项)卫生健康类项目(项目编号:HABL2023078)江苏省淮安市2023科技创新计划(睡眠呼吸障碍疾病重点实验室,项目编号:HAP202304)

Establishment of a prognostic model for head and neck squamous cell carcinoma based on immune and metabolism-related genes

Haixu Wang1, Fang Yuan2, Huazhong Cheng3, Jun Dai1, Huiming Yang1, Hongmao Song1, Min Xu4, Shuo1 Li1,(), De Huai1,()   

  1. 1. Department of Otolaryngology,Huaian Hospital Affiliated to Xuzhou Medical University,Huaian 223022,China
    2. Central Laboratory,Huai'an Hospital of Traditional Chinese Medicine,Huai'an 223302,China
    3. Department of Otolaryngology,Jiangsu Shuyang Hospital of Traditional Chinese Medicine,Suqian 223600,China
    4. Department of Radiology,Huaian Hospital Affiliated to Xuzhou Medical University,Huaian 223022,China
  • Received:2024-08-15 Published:2025-01-15
  • Corresponding author: Shuo1 Li, De Huai
引用本文:

王海旭, 袁芳, 程华中, 戴俊, 杨惠明, 宋红毛, 徐敏, 李硕, 怀德. 基于免疫和代谢相关基因构建头颈部鳞状细胞癌预后模型[J/OL]. 中华临床医师杂志(电子版), 2025, 19(01): 58-67.

Haixu Wang, Fang Yuan, Huazhong Cheng, Jun Dai, Huiming Yang, Hongmao Song, Min Xu, Shuo1 Li, De Huai. Establishment of a prognostic model for head and neck squamous cell carcinoma based on immune and metabolism-related genes[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(01): 58-67.

目的

建立基于免疫和代谢相关基因的头颈部鳞状细胞癌的预后模型,并评估该模型在HNSCC患者预后中的有效性。

方法

通过TCGA数据库下载HNSCC患者数据集,GEO数据库下载GSE65858数据集,IMMPORT、MsigDB数据库获取免疫和代谢相关基因集。TCGA数据集分为训练队列和验证队列,训练队列采用单因素和多因素Cox回归以及LASSO回归构建IMRGs预后模型。qPCR检测预后基因组织表达。TCGA验证队列和GSE65858数据集进行内外部验证。免疫浸润分析、GSEA通路富集分析、肿瘤突变负荷分析比较高低风险亚组的通路机制差异。

结果

基于TCGA训练集数据构建了包含10个基因(HLA-F、SLC11A1、GNRH1、LGR5、ICOS、HPRT1肿瘤组织中高表达,DES、BTC、DDO、CDO1肿瘤组织中低表达)的IMRGs头颈部鳞状细胞癌预后模型。低风险亚组生存时间明显长于高风险组。单因素和多因素Cox分析显示风险评分是患者独立预后因素。风险评分结合多种临床特征构建的列线图可有效用于患者预后预测,ROC曲线下面积0.825,校准曲线C-dex 0.751。GSEA富集分析和免疫细胞浸润分析表明B细胞在低风险组患者中高表达。基因相关性分析和肿瘤突变负荷分析表明高风险组患者DNA复制基因(MCM6、POLD3)、错配修复基因(MSH6)上皮间质转化基因(LOXL2)表达更高,肿瘤突变率更高。

结论

基于10个基因构建的HNSCC患者IMRGs模型可以有效预测患者预后,可为临床疾病治疗提供新的靶点。

Objective

To develop a prognostic model for head and neck squamous cell carcinoma(HNSCC) utilizing immune and metabolic-related genes, and to assess its efficacy in predicting the prognosis of HNSCC patients.

Methods

The HNSCC patient dataset was obtained from the TCGA database, while the GSE65858 dataset was sourced from the GEO database. Additionally, immune and metabolic-related gene sets were acquired from the IMMPORT and MsigDB databases, respectively. Subsequently, the TCGA dataset was partitioned into a training cohort and a validation cohort. Univariate and multifactor Cox regression,along with LASSO regression, were employed to develop prognostic models for immune-related gene signatures (IMRGs) in the training cohort. Tissue expression of prognostic genes was detected by qPCR.Internal validation was carried out in the TCGA validation cohort, followed by external validation in the GSE65858 dataset. Immune infiltration analysis, Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis, and tumor mutation load analysis were conducted to delineate pathway mechanism disparities between high and low-risk subgroups.

Results

Utilizing TCGA training set data, a prognostic model for head and neck squamous cell carcinoma was developed, comprising 10 genes (HLA-F, SLC11A1, GNRH1,LGR5, ICOS, and HPRT1 were highly expressed, while DES, BTC, DDO, and CDO1 were lowly expressed in tumor tissues). The survival duration of the low-risk subgroup significantly exceeded that of the high-risk group. Both univariate and multivariate COX analyses confirmed the risk score as an independent prognostic determinant. The combination of a risk score and various clinical features proves effective in predicting patient prognosis, as evidenced by an area under the receiver operating curve of 0.825 and a C-index of 0.751.GSEA enrichment and immune cell infiltration analyses revealed elevated B cell expression in the low-risk group. Moreover, gene correlation and tumor mutation load analyses indicated heightened levels of DNA replicators (MCM6 and POLD3), mismatch repair gene (MSH6), epithelial mesenchymal transformation gene (LOXL2), and tumor mutation rate in the high-risk group.

Conclusion

The IMRGs model for HNSCC patients constructed based on 10 genes can effectively predict the prognosis of patients, and provide a new target for clinical prognosis identification and treatment.

表1 引物序列
图1 基于TCGA训练队列构建风险评分模型。图a为IMRGs火山图;图b为回归参数图;图c为回归系数分布图;图d为用于构建风险模型的10个基因在训练队列中的表达热图;图e风险曲线;图f生存状态图;图g为高低风险2组Kaplan-Meier生存曲线;图h为受试者工作曲线
图2 10个预后模型基因在HNSCC组织中qPCR的结果展示 注:HNSCC为头颈部鳞状细胞癌
图3 在TCGA验证队列和GSE65858数据中验证预后模型。TCGA验证队列:图a为生存曲线;图b为受试者工作曲线;GEO验证队列:图c为生存曲线;图d为受试者工作曲线
图4 风险评分与临床相关特征分析。图a为风险评分在不同临床特征(年龄、性别、分级、分期)中的差异;图b为独立预后因素分析;图c为列线图构建;图d为ROC曲线;图e为C-index校准曲线
图5 信号通路富集分析。图a为KEGG;图b为GO
图6 相关性分析。图a为风险评分与各基因指标相关性分析;图b为风险评分与免疫细胞相关性分析
图7 风险评分与肿瘤突变负荷分析。图a为低风险肿瘤突变情况;图b为高风险肿瘤突变情况;图c~d为Kaplan-Meier生存曲线
1
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
2
Gatta G, Capocaccia R, Botta L. Descriptive epidemiology of the head and neck cancers in old patients [J]. Front Oncol, 2023, 13.
3
Chow LQM. Head and neck cancer [J]. N Engl J Med, 2020, 382(1):60-72.
4
Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis [J]. Oncologist,2010, 15(9): 994-1001.
5
Zhang ZJ, Huang YP, Liu ZT, et al. Identification of immune related gene signature for predicting prognosis of cholangiocarcinoma patients[J]. Front Immunol, 2023, 14: 1028404.
6
Li H, Qiao L, Kong M, et al. Construction and validation of a prognostic signature based on microvascular invasion and immunerelated genes in hepatocellular carcinoma [J]. Sci Rep, 2024, 14(1):26994.
7
Li C, Wirth U, Schardey J, Ehrlich-Treuenstätt VV, et al. An immunerelated gene prognostic index for predicting prognosis in patients with colorectal cancer [J]. Front Immunol, 2023, 14: 1156488.
8
韦巧玲, 黄妍, 赵昌, 等. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证 [J/OL]. 中华临床医师杂志(电子版),2024, 18(8): 715-721.
9
Stein M, Lin H, Jeyamohan C, et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies [J]. Prostate, 2010, 70(13): 1388-1394.
10
Hartana CA, Rassadkina Y, Gao C, et al. Long noncoding RNA MIR4435-2HG enhances metabolic function of myeloid dendritic cells from HIV-1 elite controllers [J]. J Clin Invest, 2021, 131(9): e146136.
11
Zhang C, Yue C, Herrmann A, et al. STAT3 Activation-induced fatty acid oxidation in CD8(+) T effector cells is critical for obesitypromoted breast tumor growth [J]. Cell Metab, 2020, 31(1): 148-161.e5.
12
Jiang M, Gu X, Xu Y, et al. Metabolism-associated molecular classification and prognosis signature of head and neck squamous cell carcinoma [J]. Heliyon, 2024, 10(6): e27587.
13
Wang L, Zhang Y, Li H, et al. Identification of an immune-related signature as a prognostic classifier for patients with early-stage head and neck squamous cell carcinoma [J]. Transl Cancer Res, 2024, 13(3):1367-1381.
14
Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks [J]. Front Immunol, 2023, 14: 1212476.
15
Baxevanis CN. Immune checkpoint inhibitors in cancer therapy-how can we improve Clinical benefits? [J]. Cancers, 2023, 15(3): 881.
16
Saxena M, van der Burg SH, Melief CJM, et al. Therapeutic cancer vaccines [J]. Nat Rev Cancer, 2021, 21(6): 360-378.
17
Abreu TR, Fonseca NA, Gonçalves N, et al. Current challenges and emerging opportunities of CAR-T cell therapies [J].J Control Release,2020, 319: 246-261.
18
Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response [J]. Mol Cancer, 2021, 20(1): 28.
19
Wuerfel FM, Huebner H, Häberle L, et al. HLA-G and HLA-F protein isoform expression in breast cancer patients receiving neoadjuvant treatment [J]. Sci Rep, 2020, 10(1): 15750.
20
Ma Y, Zhan L, Yang J, et al. SLC11A1 associated with tumor microenvironment is a potential biomarker of prognosis and immunotherapy efficacy for colorectal cancer [J]. Front Pharmacol,2022, 13: 984555.
21
Xu H, Zhang A, Fang C, et al. SLC11A1 as a stratification indicator for immunotherapy or chemotherapy in patients with glioma [J]. Front Immunol, 2022, 13: 980378.
22
Chava S, Bugide S, Zhang X, et al. Betacellulin promotes tumor development and EGFR mutant lung cancer growth by stimulating the EGFR pathway and suppressing apoptosis [J]. iScience, 2022, 25(5):104211.
23
Wu T, Jiao Z, Li Y, et al. HPRT1 promotes chemoresistance in oral squamous cell carcinoma via activating MMP1/PI3K/Akt signaling pathway [J]. Cancers, 2022, 14(4): 855.
24
Chen M, Zhu JY, Mu WJ, et al. Cysteine dioxygenase type 1 (CDO1):Its functional role in physiological and pathophysiological processes[J]. Genes Dis, 2023, 10(3): 877-890.
25
Takahashi S. D-Aspartate oxidase: distribution, functions, properties,and biotechnological applications [J]. Appl Microbiol Biotechnol,2020, 104(7): 2883-2895.
26
Bhunia S, Barbhuiya MA, Gupta S, et al. Epigenetic downregulation of desmin in gall bladder cancer reveals its potential role in disease progression [J]. Indian J Med Res, 2020, 151(4): 311-318.
27
Solinas C, Gu-Trantien C, Willard-Gallo K. The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy [J]. ESMO open, 2020, 5(1): e000544.
28
Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response [J]. Nature, 2020,577(7791): 549-555.
29
Petitprez F, de Reyniès A, Keung EZ, et al. B cells are associated with survival and immunotherapy response in sarcoma [J]. Nature, 2020,577(7791): 556-560.
30
Cabrita R, Lauss M, Sanna A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma [J]. Nature, 2020,577(7791): 561-565.
31
Liao H, He B. Predictive value of cuproptosis and disulfidptosisrelated lncRNA in head and neck squamous cell carcinoma prognosis and treatment [J]. Heliyon, 2024, 10(18): e37996.
32
王海宁, 孙婷婷, 陈晓艳, 等. 基于G蛋白偶联受体基因的头颈部鳞状细胞癌预后模型的建立与验证 [J]. 现代医学, 2024, 52(4):537-543.
[1] 张勇, 张立森, 岳良, 张磊磊, 柯海文, 沈运彪. 高原高寒条件下烧伤大鼠代谢指纹图谱绘制及代谢标志物筛选[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 42-54.
[2] 张忠涛, 高加勒, 姚宏伟. 新辅助放化疗联合免疫治疗局部进展期直肠癌的现状与前景[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 119-122.
[3] 姚宏伟, 孙丽婷, 吴偲, 舒文龙, 高加勒, 杨正阳, 吴国聪, 张忠涛. 新辅助放化疗联合免疫治疗局部进展期直肠癌的探索与实践[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 123-127.
[4] 王乾宇, 杜峻峰, 李世拥. 新辅助放化疗联合免疫治疗局部进展期直肠癌的突破与挑战[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 128-131.
[5] 邱皓炜, 徐臻, 肖泽秀, 夏燕, 查高峰, 庞俊. 前列腺癌mRNA 疫苗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 134-139.
[6] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[7] 黄惜惠, 陈宇鸣, 刘丽玮, 黄海泉, 徐香琴, 赖育庭. 铁代谢状态与慢性阻塞性肺疾病伴呼吸衰竭预后相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 126-130.
[8] 应允丽, 赵凤德, 韩明锋, 李明, 申辉. 肺腺癌患者衰弱状态与预后关系分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 131-134.
[9] 史丽英, 张小青, 史丽珠, 郭李平, 马燕. 床旁BAL 联合激素对COPD 肺部感染的免疫炎症调节分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 135-139.
[10] 陈晨, 裴永坚, 黄永康, 周童. AECOPD 患者血清CCN1、ECP、GSH-Px 与肺功能及免疫相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 23-28.
[11] 唐敏英, 邬绿莹, 陈津, 路君, 吴仲秋. 肾移植术后BKV 肾病免疫细胞浸润及关键基因分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 12-19.
[12] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[13] 郑希彦, 吴润鹏, 杜飞, 谢玉芬, 王平根, 张广权, 翟航, 何函樨, 李瑞曦. 基于生信分析SLC29A3 在肝癌中的表达及临床意义[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 290-295.
[14] 王重阳, 滑文文, 魏丽, 邱应和, 杨发才, 李函娟. 免疫治疗联合局部区域疗法治疗中晚期肝癌的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 302-307.
[15] 黄忠晶, 张丽东, 伍子奕, 艾军华. 不可切除肝细胞癌的转化治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 41-45.
阅读次数
全文


摘要