切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 211 -215. doi: 10.3877/cma.j.issn.1674-0785.2025.03.007

综述

人工智能在脑血管病影像评价中的研究进展
马也1, 瞿航1, 王苇1,()   
  1. 1. 225000 江苏扬州,扬州大学附属医院影像科
  • 收稿日期:2025-03-22 出版日期:2025-03-15
  • 通信作者: 王苇

Role of artificial intelligence in evaluation of cerebrovascular disease imaging

Ye Ma1, Hang Qu1, Wei Wang1,()   

  1. 1. Department of Medical Imaging,the Affiliated Hospital of Yangzhou University,Yangzhou 225000,China
  • Received:2025-03-22 Published:2025-03-15
  • Corresponding author: Wei Wang
引用本文:

马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.

Ye Ma, Hang Qu, Wei Wang. Role of artificial intelligence in evaluation of cerebrovascular disease imaging[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(03): 211-215.

脑血管疾病是全球健康的主要威胁之一。早期的精准诊断和治疗决策对于改善患者的预后至关重要,但传统的影像学评估方法存在许多局限性。近年来,人工智能通过数据预处理、自动特征提取及深度学习模型的构建,显著提高了脑血管疾病影像分析的效率与准确性。本文系统地回顾了人工智能技术在脑血管疾病影像评估中的最新进展,重点探讨其在急性缺血性脑卒中、血肿检测、动脉瘤检测和微出血检测中的临床应用价值,并讨论了当前面临的挑战及未来的发展方向。

Cerebrovascular disease is one of the major threats to global health.Early accurate diagnosis and treatment decisions are crucial for improving patient outcomes,but traditional imaging evaluation methods have many limitations.In recent years,artificial intelligence (AI) has significantly enhanced the efficiency and accuracy of cerebrovascular disease imaging analysis through data preprocessing,automatic feature extraction,and the construction of deep learning models.This paper systematically reviews the latest advancements in AI technology for cerebrovascular disease imaging evaluation,focusing on its clinical application in detecting acute ischemic stroke,hematoma,aneurysm,and microbleeding.The current challenges and future directions are also discussed.

1
Duering M,Biessels GJ,Brodtmann A,et al.Neuroimaging standards for research into small vessel disease-advances since 2013 [J].Lancet Neurol,2023,22(7): 602-618.
2
Wardlaw JM,Mair G,von Kummer R,et al.Accuracy of automated computer-aided diagnosis for stroke imaging: A critical evaluation of current evidence [J].Stroke,2022,53(7): 2393-2403.
3
Chavva IR,Crawford AL,Mazurek MH,et al.Deep learning applications for acute stroke management [J].Ann Neurol,2022,92(4): 574-587.
4
Karthik R,Menaka R,Johnson A,et al.Neuroimaging and deep learning for brain stroke detection - a review of recent advancements and future prospects [J].Comput Methods Programs Biomed,2020,197: 105728.
5
Qiao X,Lu C,Xu M,et al.Deep SAP: A novel brain image-based deep learning model for predicting stroke-associated pneumonia from spontaneous intracerebral hemorrhage [J].Acad Radiol,2024,31(12):5193-5203.
6
Xu F,Dong G,Li J,et al.Deep convolution generative adversarial network-based electroencephalogram data augmentation for poststroke rehabilitation with motor imagery [J].Int J Neural Syst,2022,32(9): 2250039.
7
Yu H,Wang Z,Sun Y,et al.Prognosis of ischemic stroke predicted by machine learning based on multi-modal MRI radiomics [J].Front Psychiatry,2022,13: 1105496.
8
Clèrigues A,Valverde S,Bernal J,et al.Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks [J].Comput Biol Med,2019,115: 103487.
9
Ahmed R,Al Shehhi A,Werghi N,et al.Segmentation of stroke lesions using transformers-augmented MRI analysis [J].Hum Brain Mapp,2024,45(11): e26803.
10
Zhou L,Wu H,Luo G,et al.Deep learning-based 3D cerebrovascular segmentation workflow on bright and black blood sequences magnetic resonance angiography [J].Insights Imaging,2024,15(1): 81.
11
Woo I,Lee A,Jung SC,et al.Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: Comparison with conventional algorithms [J].Korean J Radiol,2019,20(8): 1275-1284.
12
West HW,Siddique M,Williams MC,et al.Deep-learning for epicardial adipose tissue assessment with computed tomography:Implications for cardiovascular risk prediction [J].JACC Cardiovasc Imaging,2023,16(6): 800-816.
13
Kim YC,Lee JE,Yu I,et al.Evaluation of diffusion lesion volume measurements in acute ischemic stroke using encoder-decoder convolutional network [J].Stroke,2019,50(6): 1444-1451.
14
Aamir F,Aslam I,Arshad M,et al.Accelerated diffusion-weighted MR image reconstruction using deep neural networks [J].J Digit Imaging,2023,36(1): 276-288.
15
Moulton E,Valabregue R,Piotin M,et al.Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging [J].J Cereb Blood Flow Metab,2023,43(2): 198-209.
16
Nazari-Farsani S,Yu Y,Duarte Armindo R,et al.Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network [J].Neuroimage Clin,2023,37: 103278.
17
Albers GW,Lansberg MG,Kemp S,et al.A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3) [J].Int J Stroke,2017,12(8): 896-905.
18
Yu Y,Christensen S,Ouyang J,et al.Predicting hypoperfusion lesion and target mismatch in stroke from diffusion-weighted MRI using deep learning [J].Radiology,2023,307(1): e220882.
19
Winder A,d'Esterre CD,Menon BK,et al.Automatic arterial input function selection in CT and MR perfusion datasets using deep convolutional neural networks [J].Med Phys,2020,47(9): 4199-4211.
20
Zhu H,Chen Y,Tang T,et al.ISP-net: Fusing features to predict ischemic stroke infarct core on CT perfusion maps [J].Comput Methods Programs Biomed,2022,215: 106630
21
Hillal A,Sultani G,Ramgren B,et al.Accuracy of automated intracerebral hemorrhage volume measurement on non-contrast computed tomography: A swedish stroke register cohort study [J].Neuroradiology,2023,65(3): 479-488.
22
Lee H,Lee J,Jang J,et al.Predicting hematoma expansion in acute spontaneous intracerebral hemorrhage: Integrating clinical factors with a multitask deep learning model for non-contrast head CT [J].Neuroradiology,2024,66(4): 577-587.
23
Hu B,Shi Z,Lu L,et al.A deep-learning model for intracranial aneurysm detection on CT angiography images in China: A stepwise,multicentre,early-stage clinical validation study [J].Lancet Digit Health,2024,6(4): e261-e271.
24
Yang J,Xie M,Hu C,et al.Deep learning for detecting cerebral aneurysms with CT angiography [J].Radiology,2021,298(1): 155-163.
25
Bizjak Ž,Choi JH,Park W,et al.Deep geometric learning for intracranial aneurysm detection: Towards expert rater performance [J].J Neurointerv Surg,2024,16(11): 1157-1162.
26
Luo Y,Gao K,Fawaz M,et al.Automatic detection of cerebral microbleeds using susceptibility weighted imaging and artificial intelligence [J].Quant Imaging Med Surg,2024,14(3): 2640-2654.
27
Xia P,Hui ES,Chua BJ,et al.Deep-learning-based MRI microbleeds detection for cerebral small vessel disease on quantitative susceptibility mapping [J].J Magn Reson Imaging,2024,60(3): 1165-1175.
28
Suwalska A,Wang Y,Yuan Z,et al.CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network [J].Comput Biol Med,2022,151(Pt A): 106233.
29
Barber PA,Demchuk AM,Zhang J,et al.Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy.ASPECTS study group.Alberta stroke programme early CT score [J].Lancet,2000,355(9216): 1670-1674.
30
Cagnazzo F,Derraz I,Dargazanli C,et al.Mechanical thrombectomy in patients with acute ischemic stroke and ASPECTS ≤6: A metaanalysis [J].J Neurointerv Surg,2020,12(4): 350-355.
31
Mair G,White P,Bath PM,et al.External validation of e-ASPECTS software for interpreting brain CT in stroke [J].Ann Neurol,2022,92(6): 943-957.
32
Nagel S,Wang X,Carcel C,et al.Clinical utility of electronic alberta stroke program early computed tomography score software in the ENCHANTED trial database [J].Stroke,2018,49(6): 1407-1411.
33
Hussain L,Malibari AA,Alzahrani JS,et al.Bayesian dynamic profiling and optimization of important ranked energy from gray level co-occurrence (GLCM) features for empirical analysis of brain MRI [J].Sci Rep,2022,12(1): 15389.
34
Luo J,Dai P,He Z,et al.Deep learning models for ischemic stroke lesion segmentation in medical images: A survey [J].Comput Biol Med,2024,175: 108509.
35
Liu Y,Wen Z,Wang Y,et al.Artificial intelligence in ischemic stroke images: Current applications and future directions [J].Front Neurol,2024,15: 1418060.
36
Al-Maini M,Maindarkar M,Kitas GD,et al.Artificial intelligencebased preventive,personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: A narrative review [J].Rheumatol Int,2023,43(11): 1965-1982.
[1] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[2] 李田香, 赵瑞娜, 康琳, 毕江涵, 陈聪, 杨萌. 基于超声的影像组学模型对老年人肌少症的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(01): 70-78.
[3] 管本科, 胡力轩, 刘宇. 关节镜下治疗胫骨平台骨折的应用现状及进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 243-248.
[4] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[5] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[6] 陈洁莹, 许晶莹, 黄泽萍. 超声在女性压力性尿失禁诊断与疗效评估中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 14-20.
[7] 夏永旭, 林元强, 王辉. 多模态超声引导消融治疗周围型肺癌研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 176-179.
[8] 张岸梅, 范晔. 放射治疗技术学思政案例库的构建及在肺癌外照射的应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 194-196.
[9] 彭子洋, 王志博, 巴赫, 颜彦, 彭浩茜, 李宇, 刘学民, 向俊西, 吴荣谦, 吕毅. 增强现实、虚拟现实与混合现实在腔镜肝脏外科中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 13-17.
[10] 陈颖, 王一, 王璐, 孔德松, 章阳, 樊志敏. 结直肠癌类器官在中药及其有效成分研究中的应用进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(01): 47-52.
[11] 祝杰生, 樊沛. 人工智能在肩肘外科中的应用与进展:现状与未来展望[J/OL]. 中华肩肘外科电子杂志, 2025, 13(01): 1-5.
[12] 陈丽丽, 陈笑语, 戴琦, 吴双庆, 付庆东. 睑板腺功能障碍发病机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(02): 124-128.
[13] 吴骎, 王波, 尹万红, 廖雪莲, 郭军, 陶攀, 康焰. 人工智能爆发增长背景下的重症医学发展[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 36-41.
[14] 唐佩, 王翊钊, 马连君. 结直肠息肉内镜下冷切除技术的治疗进展[J/OL]. 中华胃肠内镜电子杂志, 2025, 12(01): 50-53.
[15] 马钰杰, 游雨禾, 朴哲, 薛洪省, 曹文军, 王珍, 赵志龙. 人工智能在肺结节预测模型中应用的研究现状[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 39-48.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?