切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 307 -314. doi: 10.3877/cma.j.issn.1674-0785.2025.04.010

所属专题: 文献

综述

胰高血糖素样肽-1受体激动剂应用于糖尿病肾脏疾病的进展更新
唐梦楚1, 段俗言1,(), 王宁宁1, 毛慧娟1, 刘云2   
  1. 1210029 南京,南京医科大学第一附属医院江苏省人民医院肾科
    2210029 南京,南京医科大学第一附属医院江苏省人民医院老年内分泌科
  • 收稿日期:2025-04-08 出版日期:2025-04-15
  • 通信作者: 段俗言
  • 基金资助:
    国家自然科学基金青年科学基金项目(82100767); 江苏省自然科学基金青年基金项目(BK20191075); 江苏省基础研究计划自然科学基金-基础研究计划重点项目(BK20243054)

Pleiotropic effects of glucagon-like peptide-1 receptor agonists in treatment of diabetic kidney disease

Mengchu Tang1, Suyan Duan1,(), Ningning Wang1, Huijuan Mao1, Yun Liu2   

  1. 1Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Provincial People’s Hospital, Nanjing 210029, China
    2Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Provincial People’s Hospital, Nanjing 210029, China
  • Received:2025-04-08 Published:2025-04-15
  • Corresponding author: Suyan Duan
引用本文:

唐梦楚, 段俗言, 王宁宁, 毛慧娟, 刘云. 胰高血糖素样肽-1受体激动剂应用于糖尿病肾脏疾病的进展更新[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 307-314.

Mengchu Tang, Suyan Duan, Ningning Wang, Huijuan Mao, Yun Liu. Pleiotropic effects of glucagon-like peptide-1 receptor agonists in treatment of diabetic kidney disease[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(04): 307-314.

糖尿病肾脏疾病(DKD)是一种进行性疾病,是糖尿病最严重的并发症之一,可能导致肾功能衰竭甚至死亡。胰高血糖素样肽-1受体激动剂(GLP-1RA)是一种治疗2型糖尿病(T2DM)的新型降糖药物,具有优良的心血管效益。大量研究表明,GLP-1RA可以通过降糖、降压、减重、调脂,改善肾脏血流动力学,调节炎性反应,抗氧化和抑制肾脏纤维化等机制发挥肾脏保护作用,在防治DKD的发生和进展方面具有很大的前景。本文就GLP-1RA已有的肾脏保护机制、临床试验的肾脏结局及目前指南建议进行综述。但GLP-1RA肾脏获益背后复杂的机制仍有待进一步发掘,需要更多的研究来阐明。

Diabetic kidney disease (DKD) is a progressive disease and one of the most serious complications of diabetes, which may lead to renal failure and even death. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a novel class of hypoglycemic drugs for the treatment of type 2 diabetes mellitus (T2DM), offering notable cardiovascular advantages. Numerous studies have shown that GLP-1RAs play a renal protective role by exerting hypoglycemic and hypertensive effects, weight loss, lipid regulation, improving renal hemodynamics, regulating inflammatory response, reducing oxidative stress. and inhibiting renal fibrosis. GLP-1RAs hold significant promise in the management of DKD. This article reviews the renal protective mechanisms, clinical evidence of renal outcomes, and current guideline recommendations of GLP-1RAs. However, the complex mechanism behind the renal benefits of GLP-1RAs still needs further exploration and more research to clarify.

表1 GLP-1 RA类药物相关肾脏结局的临床试验总结
研究名称 患者数(例) 研究设计 基线特征 药物 中位随访时间(年)/肾脏终点 基线按SGLT2i随机化分层(是/否)) 结果/结论
LEADER(NCT01179048) 9340 双盲-RCT T2DM+心血管事件高风险 利拉鲁肽 3.8/新发大量白蛋白尿,血清肌酐倍增(eGFR≤45 ml/min1.73 m2),肾脏替代治疗,肾源性死亡 HR:0.78
95%CI(0.67~0.92)/有肾脏获益
SUSTAIN6(NCT01720446) 3297 双盲-RCT T2DM+≥50岁+CVD/CKD Ⅲ~Ⅴ期,T2DM+≥60岁+心血管风险因素 司美格鲁肽 2.1/新发大量白蛋白尿,血清肌酐倍增(eGFR≤45 ml/min·1.73 m2),肾脏替代治疗,肾源性死亡 HR:0.64
95%CI(0.46~0.88)/有肾脏获益
PIONEER-6(NCT02692716) 3183 双盲-RCT T2DM+≥50岁+CVD/CKD Ⅲ~Ⅴ期,T2DM+≥60岁+心血管风险因素 口服司美格鲁肽 1.3/eGFR变化值 差异无统计学意义
FLOW(NCT03819153) 3533 四盲-RCT T2DM+CKD Ⅲ~Ⅳ期 司美格鲁肽 3.4/复合肾脏终点(起始持续性肾脏替代治疗、持续性eGFR<15 ml/min/1.73 m2、eGFR较基线持续降低≥50%、肾性死亡或心血管疾病死亡) HR:0.76
95%CI(0.66~0.88)/有肾脏获益
AWARD-7(NCT01621178) 577 开放标签-RCT T2DM+CKD Ⅲ~Ⅳ期 度拉糖肽 0.997/eGFR和UACR 差异无统计学意义
REWIND(NCT01394952) 9901 双盲-RCT T2DM+≥50岁+既往有心血管事件或心血管危险因素 度拉糖肽 5.4/新发大量白蛋白尿,eGFR恶化≥30%,肾脏替代治疗 HR:0.85
95%CI(0.77~0.93)/有肾脏获益
EXSCEL(NCT01144338) 14752 双盲-RCT T2DM(70%既往发生过心血管事件) 艾塞那肽周制剂 3.2/新发大量白蛋白尿,eGFR下降40%,肾脏替代治疗,肾脏疾病导致的死亡 HR:0.88
95%CI(0.76~1.01)/有肾脏获益
HARMONY(NCT02465515) 9463 双盲-RCT T2DM+≥40岁+CVD 阿必鲁肽 1.6/eGFR变化值 HR:0.78
95%CI(0.68~0.90)/有肾脏获益
ELIXA(NCT01147250) 6068 双盲-RCT T2DM+近期急性冠脉事件 利司那肽 2.1/新发大量白蛋白尿 HR:0.84
95%CI(0.68~1.02)/有肾脏获益
AMPLITUDE-O(NCT03730662) 4076 双盲-RCT ≥18岁+既往有CVD
≥50岁+ eGFR 25~59.9 ml/min/1.73 m2+心血管风险因素
艾培格那肽 1.8/肾移植,肾脏替代治疗(≥90 d),持续eGFR<15 ml/min/1.73 m2(≥30 d),持续eGFR较基线降低≥40%(≥30 d),新发大量白蛋白尿伴UACR较基线升高≥30% HR:0.68
95%CI(0.57~0.79)/有肾脏获益
SURPASS-4(NCT03730662) 2002 开放标签-RCT T2DM+BMI≥25 kg/m2+已确诊的心血管疾病或心血管事件的高风险 替尔泊肽 1.63/eGFR较基线下降≥ 40%、终末期肾病、肾源性死亡或新发大量白蛋白尿 HR:0.58
95%CI(0.43~0.80)有肾脏获益
SURMOUNT-2(NCT04657003) 938 双盲-RCT T2DM+BMI≥27 kg/m2 替尔泊肽 1.38/eGFR(Cr-Cys-C-eGFR)和UACR较基线变化值 eGFR较基线变化的估计治疗差异(ETD)0.0 ml/min/1.73 m2(95%CI:-1.7~1.7)
UACR(ETD)31.1%,95%CI:-40.9~-19.7/有肾脏获益
表2 GLP-1 RA类药物治疗DKD的指南建议
1
Jia W, Yu R, Wang L, et al. Prevalence of chronic kidney disease among Chinese adults with diabetes: a nationwide population-based cross-sectional study [J]. Lancet Reg Health West Pac, 2025, 55: 101463.
2
Muskiet MH, Smits MM, Morsink LM, et al. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? [J]. Nat Rev Nephrol, 2014, 10(2): 88-103.
3
Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1 [J]. Cell Metab, 2018, 27(4): 740-756.
4
Mann JFE, Fonseca V, Mosenzon O, et al. Effects of liraglutide versus placebo on cardiovascular events in patients with type 2 diabetes mellitus and chronic kidney disease [J]. Circulation, 2018, 138(25): 2908-2918.
5
Drucker DJ. The cardiovascular biology of glucagon-like peptide-1 [J]. Cell Metab, 2016, 24(1): 15-30.
6
MacIsaac RJ, Trevella P, Ekinci EI. Glucagon-like peptide-1 receptor agonists and kidney outcomes [J]. J Diabetes, 2024, 16(10): e13609.
7
Danta CC, Boa AN, Bhandari S, et al. Recent advances in drug discovery for diabetic kidney disease [J]. Expert Opin Drug Discov, 2021, 16(4): 447-461.
8
Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets [J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 16-31.
9
Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment [J]. J Am Soc Nephrol, 2017, 28(4): 1023-1039.
10
Jensen EP, Poulsen SS, Kissow H, et al. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow [J]. Am J Physiol Renal Physiol, 2015, 308(8): F867-877.
11
Muskiet MH, Tonneijck L, Smits MM, et al. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men [J]. Diabetes Obes Metab, 2016, 18(2): 178-185.
12
Haddock B, Kristensen KB, Tayyab M, et al. GLP-1 promotes cortical and medullary perfusion in the human kidney and maintains renal oxygenation during NaCl loading [J]. J Am Heart Assoc, 2023, 12(3): e027712.
13
Hinrichs GR, Hovind P, Asmar A. The GLP-1-mediated gut-kidney cross talk in humans: mechanistic insight [J]. Am J Physiol Cell Physiol, 2024, 326(2): C567-C572.
14
Kasztan M, Pollock DM. Impact of ET-1 and sex in glomerular hyperfiltration in humanized sickle cell mice [J]. Clin Sci (Lond), 2019, 133(13): 1475-1486.
15
Nauck MA, Quast DR, Wefers J, et al. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art [J]. Mol Metab, 2021, 46: 101102.
16
Marre M, Shaw J, Brändle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with type 2 diabetes (LEAD-1 SU) [J]. Diabet Med, 2009, 26(3): 268-278.
17
Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study [J]. Diabetes Care, 2009, 32(1): 84-90.
18
Garber A, Henry R, Ratner R, et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial [J]. Lancet, 2009, 373(9662): 473-481.
19
Zinman B, Gerich J, Buse JB, et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD) [J]. Diabetes Care, 2009, 32(7): 1224-1230.
20
Russell-Jones D, Vaag A, Schmitz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial [J]. Diabetologia, 2009, 52(10): 2046-2055.
21
Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6) [J]. Lancet, 2009, 374(9683): 39-47.
22
Pratley RE, Nauck M, Bailey T, et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial [J]. Lancet, 2010, 375(9724): 1447-1456.
23
El Bekay R, Coín-Aragüez L, Fernández-García D, et al. Effects of glucagon-like peptide-1 on the differentiation and metabolism of human adipocytes [J]. Br J Pharmacol, 2016, 173(11): 1820-1834.
24
Cantini G, Mannucci E, Luconi M. Perspectives in GLP-1 research: new targets, new receptors [J]. Trends Endocrinol Metab, 2016, 27(6): 427-438.
25
Wang C, Li L, Liu S, et al. GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis [J]. PLoS One, 2018, 13(3): e0193473.
26
Zhao D, Liu H, Dong P. Liraglutide reduces systolic blood pressure in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials [J]. Clin Exp Hypertens, 2020, 42(5): 393-400.
27
Fonseca VA, Devries JH, Henry RR, et al. Reductions in systolic blood pressure with liraglutide in patients with type 2 diabetes: insights from a patient-level pooled analysis of six randomized clinical trials [J]. J Diabetes Complications, 2014, 28(3): 399-405.
28
谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用 [J/OL]. 中华临床医师杂志(电子版), 2023, 17(5): 587-590.
29
中华医学会糖尿病学分会. 中国糖尿病防治指南(2024版) [J]. 中华糖尿病杂志, 2025, 17(1): 16-139.
30
American Diabetes Association Professional Practice Committee. 11. Chronic kidney disease and risk management: standards of care in diabetes-2025 [J]. Diabetes Care, 2025, 48(1 Suppl 1): S239-S251.
31
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease [J]. Kidney Int, 2024, 105(4S): S117-S314.
32
陈娟, 高鹏霞, 石敏, 等. 血清炎性细胞因子水平与糖尿病肾病病情进展的关系 [J]. 中华肾脏病杂志, 2019, 35(2): 106-112.
33
Bisgaard LS, Bosteen MH, Fink LN, et al. Liraglutide reduces both atherosclerosis and kidney inflammation in moderately uremic LDLr-/-mice [J]. PLoS One, 2016, 11(12): e0168396.
34
Kaneto H, Katakami N, Matsuhisa M, et al. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis [J]. Mediators Inflamm, 2010, 2010: 453892.
35
Rodriguez R, Escobedo B, Lee AY, et al. Simultaneous angiotensin receptor blockade and glucagon-like peptide-1 receptor activation ameliorate albuminuria in obese insulin-resistant rats [J]. Clin Exp Pharmacol Physiol, 2020, 47(3): 422-431.
36
Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential [J]. Kidney Int, 2014, 85(3): 579-589.
37
Yin W, Jiang Y, Xu S, et al. Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats [J]. J Diabetes Investig, 2019, 10(3): 613-625.
38
Ye Y, Zhong X, Li N, et al. Protective effects of liraglutide on glomerular podocytes in obese mice by inhibiting the inflammatory factor TNF-α-mediated NF-κB and MAPK pathway [J]. Obes Res Clin Pract, 2019, 13(4): 385-390.
39
Huang L, Lin T, Shi M, et al. Liraglutide ameliorates inflammation and fibrosis by downregulating the TLR4/MyD88/NF-κB pathway in diabetic kidney disease [J]. Am J Physiol Regul Integr Comp Physiol, 2024, 327(4): R410-R422.
40
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism [J]. Diabetes, 2005, 54(6): 1615-1625.
41
王璇, 娜扎开提·尼加提, 雒洋洋, 等. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性 [J/OL]. 中华临床医师杂志(电子版), 2024, 18(5): 447-454.
42
Wang W, Wang Y, Long J, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells [J]. Cell Metab, 2012, 15(2): 186-200.
43
Luna-Marco C, de Marañon AM, Hermo-Argibay A, et al. Effects of GLP-1 receptor agonists on mitochondrial function, inflammatory markers and leukocyte-endothelium interactions in type 2 diabetes [J]. Redox Biol, 2023, 66: 102849.
44
Sourris KC, Ding Y, Maxwell SS, et al. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation [J]. Kidney Int, 2024, 105(1): 132-149.
45
Tang-Christensen M, Larsen PJ, Göke R, et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats [J]. Am J Physiol, 1996, 271(4 Pt 2): R848-856.
46
Skov J, Dejgaard A, Frøkiær J, et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men [J]. J Clin Endocrinol Metab, 2013, 98(4): E664-671.
47
Roscioni SS, Heerspink HJ, de Zeeuw D. The effect of RAAS blockade on the progression of diabetic nephropathy [J]. Nat Rev Nephrol, 2014, 10(2): 77-87.
48
Tonneijck L, Muskiet MH, Smits MM, et al. Combining incretin-based drugs and RAAS inhibitors: more cons than pros? [J]. Lancet Diabetes Endocrinol, 2014, 2(9): 684-685.
49
Lovisa S, LeBleu VS, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis [J]. Nat Med, 2015, 21(9): 998-1009.
50
Li YK, Ma DX, Wang ZM, et al. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis [J]. Pharmacol Res, 2018, 131: 102-111.
51
Mann JFE, Ørsted DD, Buse JB. Liraglutide and renal outcomes in type 2 diabetes [J]. N Engl J Med, 2017, 377(22): 2197-2198.
52
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes [J]. N Engl J Med, 2016, 375(19): 1834-1844.
53
Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes [J]. N Engl J Med, 2019, 381(9): 841-851.
54
Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes [J]. N Engl J Med, 2017, 377(13): 1228-1239.
55
Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial [J]. Lancet, 2018, 392(10157): 1519-1529.
56
Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial [J]. Lancet, 2019, 394(10193): 131-138.
57
Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial [J]. Lancet Diabetes Endocrinol, 2018, 6(8): 605-617.
58
Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome [J]. N Engl J Med, 2015, 373(23): 2247-2257.
59
Perkovic V, Tuttle KR, Rossing P, et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes [J]. N Engl J Med, 2024, 391(2): 109-121.
60
Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences [J]. J Diabetes Investig, 2010, 1(1-2): 8-23.
61
Heise T, DeVries JH, Urva S, et al. Tirzepatide reduces appetite, energy intake, and fat mass in people with type 2 diabetes [J]. Diabetes Care, 2023, 46(5): 998-1004.
62
Heerspink HJL, Sattar N, Pavo I, et al. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial [J]. Lancet Diabetes Endocrinol, 2022, 10(11): 774-785.
63
Garvey WT, Frias JP, Jastreboff AM, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial [J]. Lancet, 2023, 402(10402): 613-626.
64
中华医学会内分泌学分会, 中国内分泌代谢病专科联盟. 中国糖尿病合并慢性肾脏病临床管理共识 [J]. 中华内分泌代谢杂志, 2024, 40(6): 455-461.
65
Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) [J]. Diabetes Care, 2022, 45(11): 2753-2786.
[1] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[2] 季红娟, 林娟. 基于分类树方法构建糖尿病肾脏疾病发病风险模型[J/OL]. 中华肾病研究电子杂志, 2021, 10(05): 246-251.
[3] 田冬琴, 刘开翔, 占志朋, 谢席胜. 糖尿病肾病规范化诊断研究进展[J/OL]. 中华肾病研究电子杂志, 2019, 08(03): 132-137.
[4] 刘沫言, 谢院生, 董哲毅, 张雪光, 孙雪峰, 张冬, 周建辉, 朱晗玉, 陈香美. 血红蛋白在鉴别糖尿病肾病与非糖尿病肾脏疾病中的作用[J/OL]. 中华肾病研究电子杂志, 2018, 07(06): 271-276.
[5] 李斌, 董哲毅, 荣向路, 陈香美. 糖尿病肾脏疾病生物标记物的研究进展[J/OL]. 中华肾病研究电子杂志, 2018, 07(02): 82-85.
[6] 孙林, 陈超. 加强对正常蛋白尿糖尿病肾脏疾病的认识[J/OL]. 中华肾病研究电子杂志, 2016, 05(04): 145-151.
[7] 董哲毅, 邱强, 陈香美. 糖尿病合并肾脏损害患者肾活检的临床意义[J/OL]. 中华肾病研究电子杂志, 2015, 04(02): 92-96.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?