切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 337 -345. doi: 10.3877/cma.j.issn.1674-0785.2025.05.002

临床研究

对家族聚集性膝骨关节炎家系的基因测序及在普通人群中的初步验证
肖文韬1, 谢培森1, 康清源2, 张克石2, 关振鹏2,()   
  1. 1830063 新疆乌鲁木齐,新疆医科大学第二附属医院骨科
    2100144 北京,北京大学首钢医院骨科
  • 收稿日期:2025-04-18 出版日期:2025-05-15
  • 通信作者: 关振鹏
  • 基金资助:
    国家自然科学基金项目(82172410)

Gene sequencing of a family with knee osteoarthritis and preliminary verification in the general population

Wentao Xiao1, Peisen Xie1, Qingyuan Kang2, Keshi Zhang2, Zhenpeng Guan2,()   

  1. 1Department of Orthopedics, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
    2Department of Orthopedics, Peking University Shougang Hospital, Beijing 100144, China
  • Received:2025-04-18 Published:2025-05-15
  • Corresponding author: Zhenpeng Guan
引用本文:

肖文韬, 谢培森, 康清源, 张克石, 关振鹏. 对家族聚集性膝骨关节炎家系的基因测序及在普通人群中的初步验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 337-345.

Wentao Xiao, Peisen Xie, Qingyuan Kang, Keshi Zhang, Zhenpeng Guan. Gene sequencing of a family with knee osteoarthritis and preliminary verification in the general population[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(05): 337-345.

目的

膝骨关节炎是一种常见的、主要由软骨损伤引起的退行性关节疾病,其发病的确切机制不详,但目前已知的危险因素包括年龄、肥胖、炎症、创伤和遗传因素等。本研究拟通过对膝骨关节炎高发家系进行全基因组测序,寻找与膝骨关节炎(KOA)相关的致病基因。并且在一般人群中进行初步验证。

方法

招募一个3代18例的膝骨关节炎高发家系中的6例成员,其中4例患有膝骨关节炎,2例不患膝骨关节炎;对这6例家系成员进行全基因组测序,并通过SIFT4G_Pred、Polyphen2_HDIV_Pred及Polyphen2_HVAR_Pred这三种有害性预测模型进行预测并筛选单核苷酸多态性(SNP);再招募49例一般人群,其中膝骨关节炎患者27例,健康对照组22例。对这49例一般人群进行MassArray基因分型。

结果

对膝骨关节炎高发家系成员进行了全基因组测序,对测序结果使用了三种有害性预测模型,再经过筛选后,筛选出了33个可能与膝骨关节炎有相关性的SNP位点。以这33个筛选出SNP位点和54个来自文献检索的SNP位点为基础,在招募的一般人群中进行了初步验证,结果得到有4个SNP可能与KOA有相关性,包括rs10843013、rs12119908、rs2075164及rs7953280。其中rs10843013和rs7953280来自于文献报道。

结论

本研究表明膝骨关节炎的发生发展与SNP密切相关,并且当一些SNP聚集在一个家系中时,会导致该家系患膝骨关节炎的概率大幅上升。且这些SNP位点在一般人群中,也是影响膝骨关节炎发生发展的重要因素。

Objective

Knee osteoarthritis (KOA) is a common degenerative joint disease primarily caused by cartilage damage. The exact mechanism of its pathogenesis remains unclear, but known risk factors include age, obesity, inflammation, trauma, and genetic factors. This study aimed to identify disease-associated genes related to KOA by conducting whole-genome sequencing on a high-incidence KOA family and performing preliminary validation in the general population.

Methods

Six members from a three-generation, 18-member high-incidence KOA family were recruited, including four with KOA and two without. Whole-genome sequencing was performed on these six family members, and single nucleotide polymorphisms (SNPs) were screened using three deleteriousness prediction models: SIFT4G_Pred, Polyphen2_HDIV_Pred, and Polyphen2_HVAR_Pred. Additionally, 49 individuals from the general population were recruited, including 27 KOA patients and 22 healthy controls. MassArray SNP genotyping was conducted on these 49 individuals.

Results

Whole-genome sequencing on the high-incidence KOA family members, combined with the three deleteriousness prediction models, identified 33 SNPs potentially associated with KOA. Based on these 33 SNPs and an additional 54 SNPs retrieved from the literature, preliminary validation was performed in the general population. The results revealed four SNPs that may be associated with KOA: rs10843013, rs12119908, rs2075164, and rs7953280. Among these, rs10843013 and rs7953280 were previously reported in the literature.

Conclusion

This study demonstrates that the development and progression of KOA are closely related to SNPs. When certain SNPs cluster within a family, the probability of KOA occurrence significantly increases. Moreover, these SNP loci also play an important role in influencing KOA susceptibility in the general population.

图1 图中黑色代表KOA患者,白色代表经问卷调查排除KOA的健康对照个体。先证者为Ⅱ2,纳入研究的家系成员包括Ⅱ-2、Ⅱ-6、Ⅱ-8、Ⅱ-10、Ⅲ-1和Ⅲ-2
表1 编码区的SNP的功能分类统计
表2 SNP筛选结果
表3 来自GWAS的SNP
表4 部分统计结果
1
Biver E, Berenbaum F, Valdes AM, et al. Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) [J]. Ageing Res Rev, 2019, 55: 100946.
2
GBD 2021 Gout Collaborators. Global, regional, and national burden of gout, 1990-2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021 [J]. Lancet Rheumatol, 2024, 6(8): e507-e17.
3
Weng Q, Chen Q, Jiang T, et al. Global burden of early-onset osteoarthritis, 1990-2019: results from the Global Burden of Disease Study 2019 [J]. Ann Rheum Dis, 2024, 83(7): 915-925.
4
Long H, Liu Q, Yin H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019 [J]. Arthritis Rheumatol, 2022, 74(7): 1172-1183.
5
Leifer VP, Katz JN, Losina E. The burden of OA-health services and economics [J]. Osteoarthritis Cartilage, 2022, 30(1): 10-16.
6
胡威,张亮,王俊, 等. 肌筋膜链理论下手法治疗膝骨关节炎的临床效果 [J]. 临床医学研究与实践, 2025, 10(1): 91-94.
7
田雪秋,牟开今,李丽. 从六经厥阴论治膝骨关节炎 [J]. 中国中医药现代远程教育, 2023, 21(9): 93-95.
8
Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: A review [J]. JAMA, 2021, 325(6): 568-578.
9
Meulenbelt I, Bijkerk C, Miedema HS, et al. A genetic association study of the IGF-1 gene and radiological osteoarthritis in a population-based cohort study (the Rotterdam Study) [J]. Ann Rheum Dis, 1998, 57(6): 371-374.
10
Zhai G, Rivadeneira F, Houwing-Duistermaat JJ, et al. Insulin-like growth factor I gene promoter polymorphism, collagen type II alpha1 (COL2A1) gene, and the prevalence of radiographic osteoarthritis: the Rotterdam Study [J]. Ann Rheum Dis, 2004, 63(5): 544-548.
11
Boer CG, Hatzikotoulas K, Southam L, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations [J]. Cell, 2021, 184(18):4784-4818.e17.
12
Sedaghati-Khayat B, Boer CG, Runhaar J, et al. Risk assessment for hip and knee osteoarthritis using polygenic risk scores [J]. Arthritis Rheumatol, 2022, 74(9): 1488-1496.
13
Deveza LA, Zankl A, Hunter DJ. Investigation of a family affected by early-onset osteoarthritis - proposal of a clinical pathway and bioinformatics pipeline for the investigation of cases of familial OA [J]. BMC Musculoskelet Disord, 2023, 24(1): 570.
14
Taipale M, Jakkula E, Kämäräinen OP, et al. Targeted re-sequencing of linkage region on 2q21 identifies a novel functional variant for hip and knee osteoarthritis [J]. Osteoarthritis Cartilage, 2016, 24(4): 655-663.
15
Carlson KM, Yamaga KM, Reinker KA, et al. Precocious osteoarthritis in a family with recurrent COL2A1 mutation [J]. J Rheumatol, 2006, 33(6): 1133-1136.
16
Bijsterbosch J, Meulenbelt I, Watt I, et al. Clustering of hand osteoarthritis progression and its relationship to progression of osteoarthritis at the knee [J]. Ann Rheum Dis, 2014, 73(3): 567-572.
17
Tsezou A, Karachalios T, Fytili P, et al. Absence of linkage to chromosomes 6q and 16p in a Greek population with knee osteoarthritis [J]. J Orthop Res, 2006, 24(9): 1900-1905.
18
Mu SC, Liu HC, Wu JY, et al. A large kindred of early-onset osteoarthritis of the knee and hip: excluding the link to COL2A1 gene [J]. Rheumatology (Oxford), 2009, 48(4): 371-374.
19
Nusse R, Clevers H. Wnt/beta-Catenin signaling, disease, and emerging therapeutic modalities [J]. Cell, 2017, 169(6): 985-999.
20
李晶晶,陈伟,马芹, 等. 基于Wnt/β-catenin信号通路探讨艾比外吉吾里木法斯里对骨关节炎大鼠软骨损伤的保护作用 [J]. 中成药, 2024, 46(12): 4139-4145.
21
刘洪波,靖春颖,黎正卿, 等. 基于Wnt/β-catenin信号通路的健骨伸筋汤对膝骨关节炎患者的干预作用研究 [J]. 世界中医药, 2024, 19(9): 1252-1257.
22
李盛村,鲍捷,王国祥. Wnt/β-连环蛋白信号通路在骨关节炎发生过程中的作用 [J]. 中国组织工程研究, 2012, 16(13): 2407-10.
23
程丽丽,尚双双,戈扬, 等. Wnt信号通路在骨关节炎致病机制及治疗靶点的研究进展 [J]. 中国疼痛医学杂志, 2023, 29(4): 298-302.
24
Jasiński T, Turek B, Kaczorowski M, et al. Equine models of temporomandibular joint osteoarthritis: A review of feasibility, biomarkers, and molecular signaling [J]. Biomedicines, 2024, 12(3): 542.
25
Wang M, Li S, Xie W, et al. Activation of beta-catenin signalling leads to temporomandibular joint defects [J]. Eur Cell Mater, 2014, 28: 223-235.
26
Zhou Y, Wang T, Hamilton JL, et al. Wnt/beta-catenin signaling in osteoarthritis and in other forms of arthritis [J]. Curr Rheumatol Rep, 2017, 19(9): 53.
27
Xia C, Wang P, Fang L, et al. Activation of beta-catenin in Col2-expressing chondrocytes leads to osteoarthritis-like defects in hip joint [J]. J Cell Physiol, 2019, 234(10): 18535-18543.
28
陈婕,杨军,田娜娜, 等. 膝骨关节炎治疗药物—lorecivivint [J]. 临床药物治疗杂志, 2024, 22(6): 6-13.
29
Rushton MD, Reynard LN, Young DA, et al. Methylation quantitative trait locus analysis of osteoarthritis links epigenetics with genetic risk [J]. Hum Mol Genet, 2015, 24(25): 7432-7444.
30
Andersen MK, Sterner M, Forsén T,et al. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes [J]. Diabetologia, 2014, 57(9): 1859-1868.
31
Baird DA, Paternoster L, Gregory JS, et al. Investigation of the relationship between susceptibility loci for hip osteoarthritis and dual X-ray absorptiometry-derived hip shape in a population-based cohort of perimenopausal women [J]. Arthritis Rheumatol, 2018, 70(12): 1984-1993.
32
arcOGEN Consortium; arcOGEN Collaborators; Zeggini E, Panoutsopoulou K, Southam L, et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study [J]. Lancet, 2012, 380(9844): 815-823.
33
Zhang H, Wei Q, Xiang X, et al. Semaphorin 4A acts in a feed-forward loop with NF-kappaB pathway to exacerbate catabolic effect of IL-1beta on chondrocytes [J]. Int Immunopharmacol, 2019, 69: 88-94.
34
Park HH, Logette E, Raunser S, et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex [J]. Cell, 2007, 128(3): 533-546.
35
Janssens S, Tinel A, Lippens S, et al. PIDD mediates NF-kappaB activation in response to DNA damage [J]. Cell, 2005, 123(6): 1079-1092.
36
Tang S, Yao L, Ruan J, et al. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology [J]. Sci Transl Med, 2024, 16(731): eadf4590.
[1] 钟永洌, 张杰, 张志奇. 外翻膝术后中立位机械对线的早中期疗效[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 366-373.
[2] 姚放鸣, 谷邦宁, 杨旭辉, 曾子俊, 吴佳威, 何敏聪, 何晓铭, 魏秋实, 何伟, 刘文刚. 下肢肌肉分布与内翻型膝骨关节炎进展及肌少症的相关性[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 292-301.
[3] 周莹佳, 李嘉欢, 黎浩霖, 乔永杰. 初级纤毛及刺猬蛋白信号通路在骨关节炎中的作用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 330-335.
[4] 王浩浩, 席刚, 杨家驹, 翁铭捷, 张民. 术前膝关节冠状面力线对牛津单髁术后力线的影响分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 156-161.
[5] 王春久, 田向东, 谭冶彤, 薛志鹏, 张伟, 刘昂. 单平面胫骨高位截骨联合关节镜治疗内翻型膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 185-192.
[6] 陈博, 李向毅. 骨关节炎中软骨细胞铜死亡的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 207-213.
[7] 王玺玉, 赵俊杰, 黄鹏飞, 张兆坤, 赵宇昊, 赵海燕. 基质金属蛋白酶响应性水凝胶在骨关节炎的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 76-81.
[8] 林晓东, 周宜, 章家皓, 赵传喜, 刘军, 刘文刚. 如何在中度外翻膝关节置换中实现假体功能性对线[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 116-121.
[9] 孙银松, 王德华, 周鹭, 雷一霆, 魏嘉莹, 贺尧, 董明非, 赵辰, 黄伟, 厉轲. 机器人辅助功能对线与手工机械对线全膝置换的早期疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 709-719.
[10] 谢云港, 范长海, 刘荣顺, 邓瑞晨. 不同术式治疗内侧间室膝骨关节炎的疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 720-728.
[11] 覃辉, 钟珊, 白凡, 李陈良, 罗伦. 关节镜术后冲击波干预对膝关节炎患者的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 729-735.
[12] 黄晓芳, 刘澍雨, 黄子荣, 胡艳, 梁家敏, 朱伟民. 软骨细胞来源外泌体对于软骨损伤修复的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 751-758.
[13] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[14] 黄波翠, 蔡思铭, 古裕鸟, 庄秀娟, 钟娇霞, 吴小文, 霍开明. 哮喘患儿IL-10 基因多态性与肺功能及外周血Treg 细胞的相关性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1003-1007.
[15] 康清源, 张克石, 肖文韬, 谢培森, 东黎光, 袁平, 关振鹏. 在职钢铁工人群体膝关节骨关节炎流行情况及其可能的危险因素调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 248-255.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?