切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 323 -336. doi: 10.3877/cma.j.issn.1674-0785.2025.05.001

专家共识

心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)
王玲洁1,2, 王瑷萍2,3, 李朝军2,4, 丁跃有5, 杨德业6, 赵清7, 崔兆强8, 王京昆9, 王宏宇2,10,()   
  1. 1200025 上海,上海交通大学医学院附属瑞金医院
    2201306 上海,上海临港北京大学国际科技创新中心心脏与血管健康技术研发中心
    3610500 成都,成都市新都区中医医院
    4200080 上海,上海交通大学医学院附属上海市第一人民医院
    5200235 上海,上海市第八人民医院
    6311121 杭州,杭州师范大学附属医院
    7200233 上海,上海交通大学医学院附属第六人民医院
    8200032 上海,复旦大学附属中山医院
    9650500 昆明,云南白药集团中央研究院
    10100044 北京,北京大学首钢医院
  • 收稿日期:2025-04-25 出版日期:2025-05-15
  • 通信作者: 王宏宇

Expert Consensus on Research and Development Strategies for Innovative Heart and Vascular Health Technologies (2024, Shanghai)

Lingjie Wang1,2, Aiping Wang2,3, Chaojun Li2,4, Yueyou Ding5, Deye Yang6, Qing Zhao7, Zhaoqiang Cui8, Jingkun Wang9, Hongyu Wang2,10,()   

  1. 1Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    2Heart and Vascular Health Research and Development Center in Peking University International Science and Technology Innovation Center at Shanghai Lingang Special Area, Shanghai 201306, China
    3Xindu Hospital of Traditional Chinese Medicine, Chengdu 610500, China
    4Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
    5Shanghai Eighth People’s Hospital, Shanghai 200235, China
    6The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
    7Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
    8Zhongshan Hospital, Fudan University, Shanghai 200032, China
    9Central Research Institute of Yunnan Baiyao Group, Kunming 650500, China
    10Shougang Hospital, Peking University, Beijing 100044, China
  • Received:2025-04-25 Published:2025-05-15
  • Corresponding author: Hongyu Wang
引用本文:

王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.

Lingjie Wang, Aiping Wang, Chaojun Li, Yueyou Ding, Deye Yang, Qing Zhao, Zhaoqiang Cui, Jingkun Wang, Hongyu Wang. Expert Consensus on Research and Development Strategies for Innovative Heart and Vascular Health Technologies (2024, Shanghai)[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(05): 323-336.

心血管疾病在全球和中国已成为影响人民健康的主要疾病负担。心脏与血管健康创新技术的研发是实践全生命周期管理心脏与血管疾病,包括早期检测和逆转、介入和手术治疗为一体,三级医院与社区结合的防、诊、治、康复一体化的管理模式,实践中西医结合的心血管疾病早期预防和康复策略,践行心血管疾病防控关口前移的基础。数字化、智慧医疗以及深度学习过程极大改善了心血管疾病的预防前景。基于传统和非传统危险因素、临床和实验室检测、影像资料、可穿戴设备、感应数据和生物学组的心血管健康技术研发,依托信息化和智能化系统的建设,打造以"智慧化心血管健康全生命周期数字管理"为特征的心血管疾病防控策略将极大助力"健康中国2030"。

Cardiovascular diseases (CVD) have emerged as a major disease burden affecting public health both globally and in China. The research and development of innovative technologies for heart and vascular health represent the implementation of whole-life-cycle management for CVD. This approach integrates early detection and reversal strategies with interventional and surgical treatments, establishing a collaborative prevention-diagnosis-treatment-rehabilitation model that bridges tertiary hospitals and community healthcare systems. This initiative implements integrated traditional Chinese-Western medicine strategies for early prevention and rehabilitation of CVD, while promoting the paradigm shift toward primordial prevention in CVD management. The integration of digitization, intelligent healthcare, and deep learning has significantly improved the prospects for CVD prevention. The research and development of cardiovascular health technologies—based on traditional and non-traditional risk factors, clinical and laboratory tests, imaging data, wearable devices, sensor data, and biological datasets—combined with the advancement of information technology and artificial intelligence, will enable the creation of an intelligent whole-life-cycle digital management system for cardiovascular health. This strategy will form a robust prevention and control framework for CVD, greatly helping to implement the "healthy China 2030" plan.

图1 BVHS注:FMD为血流介导的血管舒张功能;RHI为反应性充血指数;CF-PWV为颈-股动脉脉搏波传导速度;MRI为磁共振成像;DSA为数字减影血管造影
表1 BVHS
图2 基于BVHS的VH评估流程注:FMD为血流介导的血管舒张功能;RHI为反应性充血指数;CF-PWV为颈-股动脉脉搏波传导速度
图3 全生命周期VH管理模式
图4 心血管健康标记物构架图(摘自Life Medicine.2023.2[24]
1
中国心血管健康与疾病报告2023概要 [J]. 中国循环杂志, 2024, 39(7): 625-660.
2
Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis [J]. Eur Heart J, 2017, 38(7): 500-507.
3
王宏宇. 血管医学 [M]. 1版. 北京: 人民军医出版社, 2006: 1-6.
4
王宏宇. 推广血管健康理念,促进血管医学专业发展 [J]. 中国循环杂志, 2018, 33(10): 1026-1028.
5
Wang HY, Liu H. Promote the comprehensive assessment of heart and vascular health and raise the public's awareness of vascular health-interpretation of the Chinese Guideline for Application on Assessment System of Vascular Health (CAVH2018,The Third Report) [J]. Chin Med J, 2018, 98(37): 2953-2954.
6
中国血管病变早期检测技术标准化建议(草案) [J]. 中国民康医学, 2005, 17(z1): 2-5, 8.
7
王宏宇. 血管医学:血管健康评价与血管疾病综合防治 [J]. 中华医学杂志, 2010, 90(30): 2092-2093.
8
蒋姗彤,王宏宇. 基于北京血管健康分级指导的智能化全生命周期心脏和血管健康管理 [J/OL]. 中华临床医师杂志(电子版), 2019, 13(11): 868-871.
9
Liu H, Zhou X, Liu J, et al. Rationale and design of the application value of Beijing Vascular Health Stratification (BVHS): predictive value of combined assessment of vascular structure and function for cardiovascular events in general Chinese population [J]. BMC Cardiovasc Disord, 2021, 21(1): 498.
10
中国医药教育协会血管医学专业委员会, 中华医学会北京心血管病学分会血管专业学组, 北京大学医学部血管疾病社区防治中心. 中国血管健康评估系统应用指南(2018第三次报告) [J]. 中华医学杂志, 2018, 98(37): 2955-2967.
11
中国智慧化血管健康全生命周期数字管理分级诊疗实践指南编写组, 中国医药教育协会血管医学专业委员会, 中国研究型医院学会移动医疗专业委员会, 等. 中国智慧化血管健康全生命周期数字管理分级诊疗实践指南(2022第一次报告) [J]. 心血管病学进展, 2023, 44(1): 71-81.
12
王宏宇. 北京大学血管医学临床诊疗常规 [M]. 北京, 北京大学医学出版社, 2021: 37-70.
13
Sana F, Isselbacher EM, Singh JP, et al. Wearable devices for ambulatory cardiac monitoring: JACC State-of-the-Art review [J]. J Am Coll Cardiol, 2020, 75(13): 1582-1592.
14
Prieto-Avalos G, Cruz-Ramos NA, Alor-Hernández G, et al. Wearable devices for physical monitoring of heart: A review [J]. Biosensors (Basel), 2022, 12(5): 292.
15
Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward [J]. Nat Rev Cardiol, 2021, 18(8): 581-599.
16
刘靖,刘静,张宇清, 等. 智能可穿戴设备在中青年血压管理中应用中国专家共识 [J]. 中华高血压杂志, 2022, 30(8): 720-724.
17
Zhang W, Zhou YN, Zhou Y, et al. Validation of the watch-type HUAWEI WATCH D oscillometric wrist blood pressure monitor in adult Chinese [J]. Blood Press Monit, 2022, 27(5): 353-356.
18
Saito K, Hishiki Y, Takahashi H. Validation of two automatic devices, Omron HEM-6232T and HEM-6181, for self-measurement of blood pressure at the wrist according to the ANSI/AAMI/ISO 81060-2:2013 protocol and the European Society of Hypertension International Protocol revision 2010 [J]. Vasc Health Risk Manag, 2019, 15: 47-55.
19
Li XC, Liu XH, Liu LB, et al. Evaluation of left ventricular systolic function using synchronized analysis of heart sounds and the electrocardiogram [J]. Heart Rhythm, 2020, 17(5 Pt B): 876-880.
20
Meng K, Xiao X, Wei W, et al. Wearable pressure sensors for pulse wave monitoring [J]. Adv Mater, 2022, 34(21): e2109357.
21
Zhang Y, Zhang L, Wang L, et al. Subcutaneous depth-selective spectral imaging with mμSORS enables noninvasive glucose monitoring [J]. Nat Metab, 2025, 7(2): 421-433.
22
Ajjan RA, Battelino T, Cos X, et al. Continuous glucose monitoring for the routine care of type 2 diabetes mellitus [J]. Nat Rev Endocrinol, 2024, 20(7): 426-440.
23
Nightingale AM, Leong CL, Burnish RA, et al. Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor [J]. Nat Commun, 2019, 10(1): 2741.
24
Aging Biomarker Consortium; Zhang L, Guo J, Liu Y, et al. A framework of biomarkers for vascular aging: a consensus statement by the aging biomarker consortium [J]. Life Med, 2023, 2(4): lnad033.
25
Aging Biomarker Consortium; Zhang W, Che Y, Tang X, et al. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement [J]. Life Med, 2023, 2(5): lnad035.
26
Lin S, Li Z, Fu B, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo [J]. Eur Heart J, 2020, 41(46): 4400-4411.
27
白秀,王宏宇. 《中国非传统血管健康危险因素管理策略专家共识(2022第一次报告)》解读 [J]. 中国心血管杂志, 2023, 28(5): 407-410.
28
王青云. 国家药监局发布《中药注册分类及申报资料要求》 [J]. 中医药管理杂志, 2020, 28(20): 79.
29
Wang Z, Wang L, Xiao F, et al. A traditional Chinese medicine traceability system based on lightweight blockchain [J]. J Med Internet Res, 2021, 23(6): e25946.
30
Lyu M, Yan CL, Liu HX, et al. Network pharmacology exploration reveals endothelial inflammation as a common mechanism for stroke and coronary artery disease treatment of Danhong injection [J]. Sci Rep, 2017, 7(1): 15427.
31
Eickhoff MK, Winther SA, Hansen TW, et al. Assessment of the sublingual microcirculation with the GlycoCheck system: Reproducibility and examination conditions [J]. PLoS One, 2020, 15(12): e0243737.
32
卫生健康委, 发展改革委, 教育部, 等. 中国残联关于印发加快推进康复医疗工作发展意见的通知[R]. 中华人民共和国国务院公报, 2021, (24): 75-79.
33
车琳,戴翠莲,刘伟静, 等. 心脏康复分级诊疗中国专家共识 [J]. 中国介入心脏病学杂志, 2022, 30(8): 561-572.
34
Tenekecioglu E, Serruys PW, Onuma Y, et al. Randomized comparison of absorb bioresorbable vascular scaffold and mirage microfiber sirolimus-eluting scaffold using multimodality imaging [J]. JACC Cardiovasc Interv, 2017, 10(11): 1115-1130.
35
Nakamura M, Suzuki N, Fujii K, et al. The absorb GT1 bioresorbable vascular scaffold System- 5-year post-market surveillance study in Japan[J]. Circ J, 2024, 88(6): 863-872.
36
Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes[J]. Eur Heart J, 2023, 44(38): 3720-3826.
37
血管内超声在冠状动脉疾病中应用的中国专家共识专家组. 血管内超声在冠状动脉疾病中应用的中国专家共识(2018) [J]. 中华心血管病杂志, 2018, 46(5): 344-351.
38
Choi KH, Dai N, Li Y, et al. Functional coronary angiography-derived index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction [J]. JACC Cardiovasc Interv, 2021, 14(15): 1670-1684.
39
Gouëffic Y, Brodmann M, Deloose K, et al. Drug-eluting devices for lower limb peripheral arterial disease [J]. EuroIntervention, 2024, 20(18): e1136-e1153.
40
Marulanda K, Genovese EA. Adjunctive utilization of intravascular ultrasound in peripheral arterial disease treatment [J]. Ann Vasc Surg, 2024, 107: 195-207.
41
Tung ET, Yim KHC, Li CL, et al. Optical coherence tomography in peripheral arterial disease: A systematic review [J]. Int J Clin Pract, 2021, 75(10): e14628.
42
Sampedro-Gómez J, Dorado-Díaz PI, Vicente-Palacios V, et al. Machine learning to predict stent restenosis based on daily demographic, clinical, and angiographic characteristics [J]. Can J Cardiol, 2020, 36(10): 1624-1632.
43
Zhang X, Jin H, Huang X, et al. Robust genome editing in adult vascular endothelium by nanoparticle delivery of CRISPR-Cas9 plasmid DNA [J]. Cell Rep, 2022, 38(1): 110196.
44
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J]. Lancet, 2019, 394(10201): 861-867.
45
Wu TT, Zheng RF, Lin ZZ, et al. A machine learning model to predict critical care outcomes in patient with chest pain visiting the emergency department [J]. BMC Emerg Med, 2021, 21(1): 112.
46
Deng YT, You J, He Y, et al. Atlas of the plasma proteome in health and disease in 53,026 adults[J]. Cell, 2025,188(1):253-271.e7.
47
Armoundas AA, Narayan SM, Arnett DK, et al. Use of artificial intelligence in improving outcomes in heart disease: A scientific statement from the American heart association [J]. Circulation, 2024, 149(14): e1028-e1050.
[1] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[2] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[3] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[4] 李田香, 赵瑞娜, 康琳, 毕江涵, 陈聪, 杨萌. 基于超声的影像组学模型对老年人肌少症的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(01): 70-78.
[5] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[6] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[7] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[8] 陈洁莹, 许晶莹, 黄泽萍. 超声在女性压力性尿失禁诊断与疗效评估中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 14-20.
[9] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[10] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[11] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[12] 周飞虎, 毛智. 智慧化重症医学科建设:机遇与挑战[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 143-147.
[13] 王美琴, 潘海涛, 陈祥菲, 吴婉, 周昱和, 王砚青. S100B 蛋白在心血管疾病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 229-233.
[14] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
[15] 许一鸣, 范雪源, 李世浩, 徐一帆, 李博文, 耿振洋, 刘亚飞, 叶贯超, 李峰, 黄岚, 齐宇. 人工智能驱动食管癌新辅助精准治疗[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 96-104.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?