1 |
Jin L, Han X, He F, et al. Prevalence of methylmalonic acidemia among newborns and the clinical-suspected population: a meta-analyse [J]. J Matern Fetal Neona, 2022, 35(25): 8952-8967.
|
2 |
顾学范,韩连书,余永国. 中国新生儿遗传代谢病筛查现状及展望 [J]. 罕见病研究, 2022, 1(1): 13-19.
|
3 |
李育霖,孙萌,李盼盼, 等. 新生儿甲基丙二酸血症生化筛查与基因筛查结果分析 [J]. 中华实用儿科临床杂志, 2023, 38(1): 54-59.
|
4 |
Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia [J]. Orphanet J Rare Dis, 2014, 9: 130.
|
5 |
Willard HF, Rosenberg LE. Inherited methylmalonyl CoA mutase apoenzyme deficiency in human fibroblasts: evidence for allelic heterogeneity, genetic compounds, and codominant expression [J]. J Clin Invest, 1980, 65(3): 690-698.
|
6 |
杨艳玲,莫若,陈哲晖. 甲基丙二酸血症的多学科综合治疗与防控 [J]. 中华实用儿科临床杂志, 2020, 35(9): 647-652.
|
7 |
Alkhunaizi AM, Al-Sannaa N. Renal involvement in methylmalonic aciduria [J]. Kidney Int Rep, 2017, 2(5): 956-960.
|
8 |
Manoli I, Sysol JR, Li L, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia [J]. Proc Natl Acad Sci U S A, 2013, 110(33): 13552-13557.
|
9 |
Pintus G, Vitturi N, Carraro G, et al. Renal replacement therapy in methylmalonic aciduria-related metabolic failure: case report and literature review [J]. J Clin Med, 2024, 13(15):4304.
|
10 |
Bao D, Yang H, Yin Y, et al. Late-onset renal TMA and tubular injury in cobalamin C disease: a report of three cases and literature review [J]. BMC Nephrol, 2024, 25(1): 340.
|
11 |
Cosson MA, Benoist JF, Touati G, et al. Long-term outcome in methylmalonic aciduria: a series of 30 French patients [J]. Mol Genet Metab, 2009, 97(3): 172-178.
|
12 |
Hörster F, Baumgartner MR, Viardot C, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB) [J]. Pediatr Res, 2007, 62(2): 225-230.
|
13 |
Dao M, Arnoux JB, Bienaimé F, et al. Long-term renal outcome in methylmalonic acidemia in adolescents and adults [J]. Orphanet J Rare Dis, 2021, 16(1): 220.
|
14 |
Lemoine M, François A, Grangé S, et al. Cobalamin C deficiency induces a typical histopathological pattern of renal arteriolar and glomerular thrombotic microangiopathy [J]. Kidney Int Rep, 2018, 3(5): 1153-1162.
|
15 |
Genest DS, Patriquin CJ, Licht C, et al. Renal thrombotic microangiopathy: A review [J]. Am J Kidney Dis, 2023, 81(5): 591-605.
|
16 |
Beck BB, Van Spronsen F, Diepstra A, et al. Renal thrombotic microangiopathy in patients with cblC defect: review of an under-recognized entity [J]. Pediatr Nephrol, 2017, 32(5): 733-741.
|
17 |
Liu X, Xiao H, Yao Y, et al. Prominent renal complications associated with MMACHC pathogenic variant c.80A > G in Chinese children with cobalamin C deficiency [J]. Front Pediatr, 2022, 10: 1057594.
|
18 |
Maines E, Catesini G, Boenzi S, et al. Plasma methylcitric acid and its correlations with other disease biomarkers: The impact in the follow up of patients with propionic and methylmalonic acidemia [J]. J Inherit Metab Dis, 2020, 43(6): 1173-1185.
|
19 |
Manoli I, Gebremariam A, Mccoy S, et al. Biomarkers to predict disease progression and therapeutic response in isolated methylmalonic acidemia [J]. J Inherit Metab Dis, 2023, 46(4): 554-572.
|
20 |
Manoli I, Pass AR, Harrington EA, et al. 1-13C-propionate breath testing as a surrogate endpoint to assess efficacy of liver-directed therapies in methylmalonic acidemia (MMA) [J]. Genet Med, 2021, 23(8): 1522-1533.
|
21 |
Martinelli D, Deodato F, Dionisi-Vici C. Cobalamin C defect: natural history, pathophysiology, and treatment [J]. J Inherit Metab Dis, 2011, 34(1): 127-135.
|
22 |
Wood WD, Elmaghrabi A, Gotway G, et al. The roles of homocysteinemia and methylmalonic acidemia in kidney injury in atypical hemolytic uremic syndrome caused by cobalamin C deficiency [J]. Pediatr Nephrol, 2022, 37(6): 1415-1418.
|
23 |
Luciani A, Devuyst O. Methylmalonyl acidemia: from mitochondrial metabolism to defective mitophagy and disease [J]. Autophagy, 2020, 16(6): 1159-1161.
|
24 |
Keller SA, Luciani A. Mitochondrial distress in methylmalonic acidemia: novel pathogenic insights and therapeutic perspectives [J]. Cells, 2022, 11(19): 3179.
|
25 |
Luciani A, Denley MCS, Govers LP, et al. Mitochondrial disease, mitophagy, and cellular distress in methylmalonic acidemia [J]. Cell Mol Life Sci, 2021, 78(21-22): 6851-6867.
|
26 |
程沛迪,郑萍,陈倩. 甲基丙二酸血症线粒体功能障碍研究进展 [J/OL]. 中国医学前沿杂志(电子版), 2024, 16(8): 69-72.
|
27 |
Sloan JL, Achilly NP, Arnold ML, et al. The vitamin B12 processing enzyme, mmachc, is essential for zebrafish survival, growth and retinal morphology [J]. Hum Mol Genet, 2020, 29(13): 2109-2123.
|
28 |
Luciani A, Schumann A, Berquez M, et al. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency [J]. Nat Commun, 2020, 11(1): 970.
|
29 |
Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury [J]. J Am Soc Nephrol, 2003, 14(10): 2534-2543.
|
30 |
Head PE, Myung S, Chen Y, et al. Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin [J]. Sci Transl Med, 2022, 14(646): eabn4772.
|
31 |
Pu J, Guardia CM, Keren-Kaplan T, et al. Mechanisms and functions of lysosome positioning [J]. J Cell Sci, 2016, 129(23): 4329-4339.
|
32 |
Manganelli V, Salvatori I, Costanzo M, et al. Overexpression of neuroglobin promotes energy metabolism and autophagy induction in human neuroblastoma SH-SY5Y cells [J]. Cells, 2021, 10(12): 3394.
|
33 |
Li W, He P, Huang Y, et al. Selective autophagy of intracellular organelles: recent research advances [J]. Theranostics, 2021, 11(1): 222-256.
|
34 |
Kitada M, Koya D. Autophagy in metabolic disease and ageing [J]. Nat Rev Endocrinol, 2021, 17(11): 647-661.
|
35 |
Costanzo M, Cevenini A, Kollipara L, et al. Methylmalonic acidemia triggers lysosomal-autophagy dysfunctions [J]. Cell Biosci, 2024, 14(1): 63.
|
36 |
Lee JJ, Ishihara K, Notomi S, et al. Lysosome-associated membrane protein-2 deficiency increases the risk of reactive oxygen species-induced ferroptosis in retinal pigment epithelial cells [J]. Biochem Biophys Res Commun, 2020, 521(2): 414-419.
|
37 |
Ng DK, Pierce CB. Kidney disease progression in children and young adults with pediatric CKD: epidemiologic perspectives and clinical applications [J]. Semin Nephrol, 2021, 41(5): 405-415.
|
38 |
Pickkers P, Darmon M, Hoste E, et al. Acute kidney injury in the critically ill: an updated review on pathophysiology and management [J]. Intensive Care Med, 2021, 47(8): 835-850.
|
39 |
Pavuluri K, Manoli I, Pass A, et al. Noninvasive monitoring of chronic kidney disease using pH and perfusion imaging [J]. Sci Adv, 2019, 5(8): eaaw8357.
|
40 |
王博,郭利君, 李二强, 等.消化道与口腔黏膜组织在输尿管重建中的研究进展 [J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(5): 434-439.
|
41 |
Wu B, Warnock G, Zaiss M, et al. An overview of CEST MRI for non-MR physicists [J]. EJNMMI Phys, 2016, 3(1): 19.
|
42 |
Mayer S, Rolletschek H, Radchuk V, et al. Metabolic imaging in living plants: A promising field for chemical exchange saturation transfer (CEST) MRI [J]. Sci Adv, 2024, 10(38): eadq4424.
|
43 |
Kitai K, Kawaguchi K, Tomohiro T, et al. The lysosomal protein ABCD4 can transport vitamin B12 across liposomal membranes in vitro [J]. J Biol Chem, 2021, 296: 100654.
|
44 |
Kölker S, Schwab M, Hörster F, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain [J]. J Biol Chem, 2003, 278(48): 47388-47393.
|
45 |
Kacpura A, Frigeni M, Gunther K, et al. Clinical and biochemical outcomes in cobalamin C deficiency with use of high-dose hydroxocobalamin in the early neonatal period [J]. Am J Med Genet A, 2022, 188(6): 1831-1835.
|
46 |
Cui X, Li N, Xue H, et al. Case report: Is exchange transfusion a possible treatment for metabolic decompensation in neonates with methylmalonic aciduria in the setting of limited resources? [J]. Front Pediatr, 2022, 10: 926793.
|
47 |
Chakrapani A, Stojanovic J, Vara R, et al. Safety, efficacy, and timing of transplantation(s) in propionic and methylmalonic aciduria [J]. J Inherit Metab Dis, 2023, 46(3): 466-481.
|
48 |
Sen K, Burrage LC, Chapman KA, et al. Solid organ transplantation in methylmalonic acidemia and propionic acidemia: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG) [J]. Genet Med, 2023, 25(2): 100337.
|
49 |
Yap S, Vara R, Morais A. Post-transplantation outcomes in patients with PA or MMA: A review of the literature [J]. Adv Ther, 2020, 37(5): 1866-1896.
|
50 |
Dello Strologo L, Spada M, Vici CD, et al. Renal outcome and plasma methylmalonic acid levels after isolated or combined liver or kidney transplantation in patients with methylmalonic acidemia: A multicenter analysis [J]. Mol Genet Metab, 2022, 137(3): 265-272.
|
51 |
Lin NC, Tsai HL, Chen CY, et al. Safety and long-term outcomes of early liver transplantation for pediatric methylmalonic acidemia patients [J]. Pediatr Transplant, 2022, 26(4): e14228.
|
52 |
Noone D, Riedl M, Atkison P, et al. Kidney disease and organ transplantation in methylmalonic acidaemia [J]. Pediatr Transplant, 2019, 23(4): e13407.
|