切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 374 -381. doi: 10.3877/cma.j.issn.1674-0785.2025.05.007

基础研究

Circ_0136474增强软骨细胞自噬抑制骨关节炎软骨缺损
谢培森1, 张绍龙2, 张克石3, 关振鹏3,()   
  1. 1830063 乌鲁木齐,新疆医科大学第二附属医院骨科
    2100144 北京,民航总医院骨科
    3100144 北京,北京大学首钢医院骨科
  • 收稿日期:2025-05-11 出版日期:2025-05-15
  • 通信作者: 关振鹏
  • 基金资助:
    国家自然科学基金项目(82172410)

Circ_0136474 inhibits autophagy of chondrocytes and exacerbates cartilage defects in osteoarthritis

Peisen Xie1, Shaolong Zhang2, Keshi Zhang3, Zhenpeng Guan3,()   

  1. 1Department of Orthopedics, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
    2Department of Orthopedics, Civil Aviation General Hospital, Beijing 100144, China
    3Department of Orthopedics, Department of Orthopedics, Shougang Hospital, Peking University, Beijing 100144, China
  • Received:2025-05-11 Published:2025-05-15
  • Corresponding author: Zhenpeng Guan
引用本文:

谢培森, 张绍龙, 张克石, 关振鹏. Circ_0136474增强软骨细胞自噬抑制骨关节炎软骨缺损[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 374-381.

Peisen Xie, Shaolong Zhang, Keshi Zhang, Zhenpeng Guan. Circ_0136474 inhibits autophagy of chondrocytes and exacerbates cartilage defects in osteoarthritis[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(05): 374-381.

目的

研究一种新型环状RNA—Circ_0136474在骨关节炎(OA)软骨细胞自噬调控中的作用,探索其对OA防治的潜在机制,为临床治疗提供新的理论依据。

方法

SW1353软骨细胞系构建OA细胞模型,BALB/c小鼠构建OA小鼠模型。通过qRT-PCR检测Circ_0136474的表达水平,利用Western blot(WB)分析自噬相关蛋白的变化,采用番红固绿染色观察软骨组织的病理变化。使用特异性靶向circ_0136474的shRNA构建SW1353细胞的circ_0136474敲除模型,并通过免疫荧光实验和自噬双标慢病毒mRFP-GFP-LC3分析自噬体和自噬溶酶体的动态变化。此外,采用AAV病毒构建circ_0136474敲除小鼠模型,评估关节损伤程度及软骨组织自噬水平的变化。

结果

HE染色结果显示,对照组的关节软骨结构完整,表面光滑清晰,而OA组关节软骨表面完整性遭到破坏,软骨细胞排列紊乱。番红固绿染色结果显示OA小鼠软骨细胞显著丧失,OARSI评分结果表明OA组的评分明显升高。Circ_0136474在OA小鼠模型中表现出上调趋势;与此同时,OA模型中LC3BII/I和Beclin-1的表达水平显著下降,p62的表达水平上升。通过在细胞和动物模型中沉默circ_0136474,发现circ_0136474水平显著下降,且自噬水平得以恢复。病理学检查显示,circ_0136474沉默组关节软骨表面更为完整,软骨细胞排列较为规整,OARSI评分显著降低,软骨细胞的数量明显增多。

结论

体内外实验验证了circ_0136474在OA模型软骨细胞中的异常表达,实验结果显示沉默软骨细胞中的circ_0136474,可增强OA中自噬水平,缓解OA中的软骨破坏。这一发现为OA的预防与治疗提供了新的理论依据。

Objective

To investigate the role of a novel circular RNA, circ_0136474, in regulating chondrocyte autophagy in osteoarthritis (OA) and explore its potential mechanism in OA prevention and treatment, in order to provide a new theoretical basis for clinical treatment.

Methods

The SW1353 chondrocyte cell line was used to establish an OA cell model, and BALB/c mice were used to establish an OA mouse model. The expression level of circ_0136474 was detected by qRT-PCR, and autophagy-related proteins were analyzed using Western blot (WB). Safranin O-fast green staining was used to observe the pathological changes in cartilage tissue. A specific shRNA targeting circ_0136474 was used to knock down circ_0136474 in SW1353 cells, and the dynamic changes of autophagosomes and autolysosomes were analyzed using immunofluorescence and the autophagy double marker lentivirus mRFP-GFP-LC3. In addition, an AAV virus was used to establish a circ_0136474 knockdown mouse model to evaluate joint damage and the changes in chondrocyte autophagy levels.

Results

HE staining showed that the joint cartilage structure in the control group was intact, with a smooth and clear surface, while the cartilage in the OA group had disrupted surface integrity and disordered arrangement of chondrocytes. Safranin O-fast green staining revealed a significant loss of chondrocytes in OA mice. The OARSI score showed a significant increase in the OA group. Circ_0136474 expression was upregulated in the OA mouse model. Meanwhile, in the OA model, the expression levels of LC3BII/I and Beclin-1 were significantly decreased, and p62 expression was increased. Silencing circ_0136474 in both cell and animal models resulted in a significant decrease in circ_0136474 levels and restoration of autophagy. Pathological examination showed that in the circ_0136474 silencing group, the cartilage surface was more intact, the chondrocytes were more orderly arranged, the OARSI score significantly decreased, and the number of chondrocytes increased.

Conclusion

Both in vivo and in vitro experiments confirmed the abnormal expression of circ_0136474 in OA model chondrocytes. Ssilencing circ_0136474 in chondrocytes enhanced autophagy levels in OA and alleviated cartilage damage in OA. This finding provides a new theoretical basis for the prevention and treatment of OA.

图1 HE染色以及番红固绿染色光镜图。图a为HE低倍放大,Sham组的关节软骨结构完整;图b为HE低倍放大,OA组的关节软骨受到破坏;图c为番红固绿染色低倍放大,软骨正常;图d为番红固绿染色低倍放大,软骨明显损伤注:OA为骨关节炎
图2 OARSI评分注:*P<0.05;****P<0.0001;OARSI为国际骨关节炎研究学会评分;OA为骨关节炎
图3 qRT-PCR检测Circ_0136474注:*P<0.05;**P<0.01;qRT-PCR为定量反转录聚合酶链式反应;OA为骨关节炎
图4 western blot检测相关蛋白在不同浓度IL-1β诱导的OA细胞模型中的表达。图a为p62,LC3B II/I和Beclin-1的wb结果;图b为p62,LC3B II/I和Beclin-1的wb结果的灰度值分析注:*P<0.05;**P<0.01;IL-1β为白细胞介素-1β;OA为骨关节炎
图5 qPCR检测Circ_0136474注:*P<0.05;**P<0.01;qPCR为定量聚合酶链式反应;IL-1β为白细胞介素-1β
图6 qPCR检测Circ_0136474的表达注:*P<0.05;****P<0.0001;qPCR为定量聚合酶链式反应;IL-1β为白细胞介素-1β
图7 免疫荧光检测细胞自噬流图。图a~d为免疫荧光检测细胞自噬流GFP-LC3单标探针在4组细胞中的荧光信号;图e~h为RFP-LC3单标探针在4组细胞中的荧光信号;图i~l为mRFP-GFP-LC3双标探针在4组细胞中的荧光信号注:IL-1β为白细胞介素-1β
图8 western blot检测LC3B II/I、P62、BACH1的表达。图a为p62,LC3B II/I和Beclin-1的wb结果;图b为p62,LC3B II/I和Beclin-1的wb结果的灰度值分析注:*P<0.05;**P<0.01;IL-1β为白细胞介素-1β
图9 HE染色以及番红固绿染色。图a为HE低倍放大;Sham组的关节软骨结构完整;图b为HE低倍放大;OA组的关节软骨受到破坏;图c为HE低倍放大;OA+AAV-shNC组的关节软骨受到破坏;图d为HE低倍放大;OA组破坏的关节软骨结构恢复;图e为番红固绿染色低倍放大软骨正常;图f为番红固绿染色低倍放大;软骨损伤明显;图g为番红固绿染色低倍放大;软骨损伤明显;图h为番红固绿染色低倍放大;软骨损伤显著降低注:OA为骨关节炎
图10 OARSI评分注:*P<0.05;**P<0.01;OARSI为国际骨关节炎研究学会评分;OA为骨关节炎
1
Zheng L, Zhang Z, Sheng P, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis [J]. Ageing Res Rev, 2021, 66: 101249.
2
Long H, Liu Q, Yin H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019 [J]. Arthritis Rheumatol, 2022, 74(7): 1172-83.
3
Hamood R, Tirosh M, Fallach N, et al. Prevalence and incidence of osteoarthritis: A population-based retrospective cohort study [J]. J Clin Med, 2021, 10(18): 4282.
4
Ding SL, Pang ZY, Chen XM, et al. Urolithin a attenuates IL-1β-induced inflammatory responses and cartilage degradation via inhibiting the MAPK/NF-κB signaling pathways in rat articular chondrocytes [J]. J Inflamm (Lond), 2020, 17: 13.
5
Quicke JG, Conaghan PG, Corp N, et al. Osteoarthritis year in review 2021: epidemiology & therapy [J]. Osteoarthritis Cartilage, 2022, 30(2): 196-206.
6
Li X, Liu F, Liang W, et al. Tougu Xiaotong capsule promotes chondrocyte autophagy by regulating the Atg12/LC3 conjugation systems [J]. Int J Mol Med, 2014, 34(2): 545-552.
7
Caramés B, Hasegawa A, Taniguchi N, et al. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis [J]. Ann Rheum Dis, 2012, 71(4): 575-581.
8
Yue J, Aobulikasimu A, Sun W, et al. Targeted regulation of FoxO1 in chondrocytes prevents age-related osteoarthritis via autophagy mechanism [J]. J Cell Mol Med, 2022, 26(11): 3075-3082.
9
Liu X, Xiao H, Peng X, et al. Identification and comprehensive analysis of circRNA-miRNA-mRNA regulatory networks in osteoarthritis [J]. Front Immunol, 2022, 13: 1050743.
10
Kong H, Sun ML, Zhang XA, et al. Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis [J]. Front Cell Dev Biol, 2021, 9: 774370.
11
Li Z, Yuan B, Pei Z, et al. Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis [J]. J Cell Mol Med, 2019, 23(10): 6554-6564.
12
Courties A, Kouki I, Soliman N, et al. Osteoarthritis year in review 2024: epidemiology and therapy [J]. Osteoarthritis Cartilage, 2024, 32(11): 1397-1404.
13
Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis [J]. Mediators Inflamm, 2014, 2014: 561459.
14
Tu J, Huang W, Zhang W, et al. The emerging role of lncRNAs in chondrocytes from osteoarthritis patients [J]. Biomed Pharmacother, 2020, 131: 110642.
15
Yoshida G, Kawabata T, Takamatsu H, et al. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis [J]. Autophagy, 2022, 18(10): 2323-2332.
16
Vicencio JM, Galluzzi L, Tajeddine N, et al. Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a mini-review [J]. Gerontology, 2008, 54(2): 92-99.
17
Almonte-Becerril M, Navarro-Garcia F, Gonzalez-Robles A, et al. Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of Osteoarthritis within an experimental model [J]. Apoptosis, 2010, 15(5): 631-638.
18
Musumeci G, Szychlinska MA, Mobasheri A. Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis: molecular markers of senescent chondrocytes [J]. Histol Histopathol, 2015, 30(1): 1-12.
19
van den Berg WB. Osteoarthritis year 2010 in review: pathomechanisms [J]. Osteoarthritis Cartilage, 2011, 19(4): 338-341.
20
Caramés B, Taniguchi N, Otsuki S, et al. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis [J]. Arthritis Rheum, 2010, 62(3): 791-801.
21
Pan X, Zhao Z, Huang X, et al. Circ-slain2 alleviates cartilage degradation and inflammation of TMJOA [J]. J Dent Res, 2023, 102(13): 1498-1506.
22
Zhou ZB, Huang GX, Fu Q, et al. circRNA.33186 contributes to the pathogenesis of osteoarthritis by sponging miR-127-5p [J]. Mol Ther, 2019, 27(3): 531-541.
23
Shen S, Wu Y, Chen J, et al. CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene [J]. Ann Rheum Dis, 2019, 78(6): 826-836.
24
Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases [J]. EBioMedicine, 2018, 34: 267-274.
25
Zhang W, Qi L, Chen R, et al. Circular RNAs in osteoarthritis: indispensable regulators and novel strategies in clinical implications [J]. Arthritis Res Ther, 2021, 23(1): 23.
[1] 王峰, 曲更宝, 王文彦, 代艳亭. 罗汉果醇对人乳腺癌细胞自噬和凋亡的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 27-32.
[2] 钟永洌, 张杰, 张志奇. 外翻膝术后中立位机械对线的早中期疗效[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 366-373.
[3] 姚放鸣, 谷邦宁, 杨旭辉, 曾子俊, 吴佳威, 何敏聪, 何晓铭, 魏秋实, 何伟, 刘文刚. 下肢肌肉分布与内翻型膝骨关节炎进展及肌少症的相关性[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 292-301.
[4] 周莹佳, 李嘉欢, 黎浩霖, 乔永杰. 初级纤毛及刺猬蛋白信号通路在骨关节炎中的作用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 330-335.
[5] 王浩浩, 席刚, 杨家驹, 翁铭捷, 张民. 术前膝关节冠状面力线对牛津单髁术后力线的影响分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 156-161.
[6] 王春久, 田向东, 谭冶彤, 薛志鹏, 张伟, 刘昂. 单平面胫骨高位截骨联合关节镜治疗内翻型膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 185-192.
[7] 陈博, 李向毅. 骨关节炎中软骨细胞铜死亡的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 207-213.
[8] 王玺玉, 赵俊杰, 黄鹏飞, 张兆坤, 赵宇昊, 赵海燕. 基质金属蛋白酶响应性水凝胶在骨关节炎的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 76-81.
[9] 林晓东, 周宜, 章家皓, 赵传喜, 刘军, 刘文刚. 如何在中度外翻膝关节置换中实现假体功能性对线[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 116-121.
[10] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[11] 吕园园, 高辰旸, 徐永君. 纳米金棒对A549 细胞的毒性效应及其对自噬的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 20-29.
[12] 肖文韬, 谢培森, 康清源, 张克石, 关振鹏. 对家族聚集性膝骨关节炎家系的基因测序及在普通人群中的初步验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 337-345.
[13] 康清源, 张克石, 肖文韬, 谢培森, 东黎光, 袁平, 关振鹏. 在职钢铁工人群体膝关节骨关节炎流行情况及其可能的危险因素调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 248-255.
[14] 欧范妍, 郭乾, 曾莉雄, 陈秋莉, 甘厚玉, 杨洁. 基于机器学习和转录组学综合分析线粒体自噬和铁死亡关键基因在成人脓毒症诱导ARDS中的免疫调控作用机制[J/OL]. 中华卫生应急电子杂志, 2025, 11(02): 86-101.
[15] 姜帅宇, 刘越, 路晓光. 高脂饲喂调控自噬对肠黏膜屏障应激能力的影响[J/OL]. 中华卫生应急电子杂志, 2024, 10(06): 359-367.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?