切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (07) : 513 -519. doi: 10.3877/cma.j.issn.1674-0785.2025.07.005

基础研究

富马酸二甲酯对氧化应激诱导黑素细胞损伤的保护机制研究
苗芳, 李晓荟, 江珊()   
  1. 430060 武汉,武汉大学人民医院皮肤科
  • 收稿日期:2025-05-16 出版日期:2025-07-30
  • 通信作者: 江珊
  • 基金资助:
    国家自然科学基金资助项目(82303984); 湖北省自然科学基金资助项目(2022CFB746)

Protective mechanism of dimethyl fumarate against oxidative stress-induced melanocyte injury

Fang Miao, Xiaohui Li, Shan Jiang()   

  1. Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2025-05-16 Published:2025-07-30
  • Corresponding author: Shan Jiang
引用本文:

苗芳, 李晓荟, 江珊. 富马酸二甲酯对氧化应激诱导黑素细胞损伤的保护机制研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 513-519.

Fang Miao, Xiaohui Li, Shan Jiang. Protective mechanism of dimethyl fumarate against oxidative stress-induced melanocyte injury[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(07): 513-519.

目的

本研究旨在探讨富马酸二甲酯(DMF)对氧化应激诱导的人表皮黑素细胞(MCs)损伤的保护作用及机制研究,从而为白癜风的临床治疗探索新的策略。

方法

通过检测不同浓度DMF对MCs增殖活性的影响,筛选适宜的预处理浓度;利用过氧化氢(H2O2)处理MCs建立细胞氧化应激损伤模型;研究分为正常对照组、H2O2组(细胞模型)和H2O2+DMF组(药物预处理模型)。正置显微镜观察MCs形态并统计树突长度、树突数目;凋亡试剂盒评估DMF预处理对氧化应激状态下MCs凋亡的影响;流式细胞术及免疫荧光染色测定MCs内活性氧簇(ROS)水平,检测过氧化氢酶(CAT)及超氧化物歧化酶(SOD)活性;蛋白免疫印迹法检测核转录因子红系2相关因子(Nrf2)、p-Nrf2及下游靶基因血红素氧化酶-1(HO-1)表达水平。之后,将研究分为正常对照组、H2O2组、H2O2+DMF组及H2O2+DMF+ML385组(Nrf2抑制剂组),回复论证Nrf2蛋白在DMF抗氧化保护机制中的必要性。

结果

与正常对照组相比,H2O2组树突长度缩短(P<0.01),树突数目减少(P<0.01),凋亡阳性细胞比例增加(P<0.01),细胞内ROS水平升高(P<0.01),SOD和CAT活性降低(P<0.001)。与H2O2组相比,H2O2+DMF组可显著抑制氧化应激诱导的MCs凋亡(P<0.05),同时降低胞内ROS的水平(P<0.05),提高SOD和CAT活性(P<0.01),增加Nrf2、p-Nrf2和HO-1的蛋白表达(P<0.05)。在回复论证实验中,加入Nrf2抑制剂预处理后,与H2O2+DMF组相比,H2O2+DMF+ML385组SOD和CAT活性显著降低(P<0.01),胞内ROS水平升高(P<0.05)。

结论

DMF可提高MCs抗氧化酶活性,并激活Nrf2/HO-1信号通路,对氧化应激诱导的MCs损伤具有显著保护作用,有望通过抗氧化途径成为白癜风治疗的药物选择。

Objective

To explore how dimethyl fumarate (DMF) protects against oxidative stress-induced melanocyte injury, in order to offer new ideas for vitiligo treatment.

Methods

The optimal DMF concentration for melanocytes was determined by assessing its impact on their proliferation. An oxidative stress model was created using H2O2. The study involved four groups: normal control, H2O2-treated, H2O2+DMF, and H2O2+DMF+ML385 (a Nrf2 inhibitor). Melanocyte morphology, dendrite length, and cell number were observed. The effect of DMF on melanocyte apoptosis under oxidative stress was evaluated with an apoptosis detection kit. Flow cytometry and immunofluorescence staining were used to measure intracellular ROS levels and CAT/SOD activity. Western blot analysis was performed to detect the expression of Nrf2, p-Nrf2, and HO-1. The four groups were compared for the above parameters to confirm Nrf2's role in DMF's antioxidant mechanism.

Results

The H2O2-treated group had shorter dendrites, fewer dendrites, more apoptosis-positive cells, higher intracellular ROS, and lower SOD/CAT activity than the normal control group. The H2O2+DMF group had significantly inhibited oxidative stress-induced melanocyte apoptosis, reduced ROS, increased SOD/CAT activity, and boosted Nrf2, p-Nrf2, and HO-1 expression. In the H2O2+DMF+ML385 group, SOD/CAT activity decreased, and intracellular ROS rose compared to the H2O2+DMF group.

Conclusion

DMF protects against oxidative stress-induced melanocyte injury by activating the Nrf2/HO-1 pathway and enhancing antioxidant capacity, showing potential for vitiligo therapy.

图1 不同浓度H2O2处理黑素细胞24 h后细胞活性检测 注:aP<0.01;aaaP<0.001;H2O2为过氧化氢
图2 不同浓度DMF处理黑素细胞48 h后细胞活性检测 注:*P<0.05;**P<0.01;DMF为富马酸二甲酯
图3 DMF对氧化应激状态下MCs形态结构的影响。图a为倒置显微镜观察;图b为细胞数目及树突长度、树突数目统计 注:**P<0.01;DMF为富马酸二甲酯;MCs为黑素细胞
图4 DMF抑制H2O2诱导的黑素细胞凋亡。图a为TUNEL荧光染色结果;图b为阳性细胞百分比统计图 注:*P<0.05;**P<0.01;ns表示P>0.05;DMF为富马酸二甲酯;H2O2为过氧化氢
图5 DMF降低H2O2诱导的黑素细胞内ROS产生并提高其抗氧化能力。图a为荧光染色结果;图b为流式细胞术结果;图c为CAT和SOD活性检测统计图 注:*P<0.05;**P<0.01;***P<0.001;ns表示P>0.05;DMF为富马酸二甲酯;H2O2为过氧化氢
图6 DMF激活Nrf2/HO-1信号通路缓解H2O2诱导的黑素细胞损伤。图a为Western Blot结果;图b为蛋白条带统计;图c为CAT和SOD活性检测统计图;图d为流式细胞术结果 注:*P<0.05;**P<0.01;ns表示P>0.05;DMF为富马酸二甲酯;Nrf2/HO-1为核转录因子红系2相关因子/血红素氧化酶-1;H2O2为过氧化氢
1
Frisoli ML, Essien K, Harris JE. Vitiligo: mechanisms of pathogenesis and treatment[J]. Annu Rev Immunol, 2020, 38: 621-648.
2
Perez-bootello J, Cova-martin R, Naharro-rodriguez J, et al. Vitiligo: Pathogenesis and new and emerging treatments[J]. Int J Mol Sci, 2023, 24(24): 17306.
3
Xie H, Zhou F, Liu L, et al. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?[J]. J Dermatol Sci, 2016, 81(1): 3-9.
4
Tintore M, Vidal-jordana A, Sastre-garriga J. Treatment of multiple sclerosis - success from bench to bedside[J]. Nat Rev Neurol, 2019, 15(1): 53-58.
5
Campione E, Mazzilli S, Diprete M, et al. The role of glutathione-s transferase in psoriasis and associated comorbidities and the effect of dimethyl fumarate in this pathway[J]. Front Med (Lausanne), 2022, 8(9): 760852.
6
Liao Z, Yao Y, Dong B, et al. Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires MrgX2 activation[J]. Chin Med J (Engl). 2024 Sep 30. Epub ahead of print.
7
Le Y, Geng MM, Dong BQ, et al. Increased splicing of CXCR3 isoform B (CXCR3B) by impaired NRF2 signaling leads to melanocyte apoptosis in active vitiligo[J]. Free Radic Biol Med. 2024, 20(225): 687-698.
8
Zhang Y, Zhao S, Fu Y, et al. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease[J]. Cell Death Dis. 2024, 11(8):641.
9
Rowojolu OA, Orlow SJ, Elbuluk N, et al. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone[J]. Exp Dermatol, 26(7):637-644.
10
Chang Y, Li S, Guo W, et al. Simvastatin Protects Human Melanocytes from H2O2-Induced Oxidative Stress by Activating Nrf2[J]. J Invest Dermatol. 2017, 137(6):1286-1296.
11
Miao F, Su MY, Jiang S, et al. Intramelanocytic acidification plays a role in the antimelanogenic and antioxidative properties of vitamin C and its derivatives[J]. Oxid Med Cell Longev. 2019, 12: 2084805.
12
Xie B, Zhu Y, Shen Y, et al. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection[J]. Expert Opin Ther Targets, 2023, 27(3): 189-206.
13
Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo[J]. Med Res Rev, 2021, 41(2): 1138-1166.
14
Henry W, Lim PE, Grimes OA, et al. Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo: a randomized multicenter trial[J]. JAMA Dermatol, 2014, 151(1): 42-50.
15
Wei GM, Pan YH, Wang JY, et al. Role of HMGB1 in Vitiligo: Current Perceptions and Future Perspectives[J]. Clin Cosmet Investig Dermatol, 2022, 15: 2177-2186.
16
Zhou S, Zeng H, Huang J, et al. Epigenetic regulation of melanogenesis[J]. Ageing Res Rev, 2021, 69: 101349.
17
Denat L, Kadekaro AL, Marrot L, et al. Melanocytes as instigators and victims of oxidative stress[J]. J Invest Dermatol, 2014, 134(6): 1512-1518.
18
Papaccio F, D'arino A, Caputo S, et al. Focus on the contribution of oxidative stress in skin aging[J]. Antioxidants (Basel), 2022, 11(6): 1121.
19
Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease[J]. J Invest Dermatol, 2006, 126(12): 2565-2575.
20
Prignano F, Pescitelli L, Becatti M, et al. Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin[J]. J Dermatol Sci, 2009, 54(3): 157-167.
21
Boissy RE, Liu YY, Medrano EE, et al. Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures of melanocytes from vitiligo patients[J]. J Invest Dermatol, 1991, 97(3): 395-404.
22
Karsli N, Akcali C, Ozgoztasi O, et al. Role of oxidative stress in the pathogenesis of vitiligo with special emphasis on the antioxidant action of narrowband ultraviolet B phototherapy[J]. J Int Med Res, 2014, 42(3): 799-805.
23
Elgoweini M, Nour El, Din N. Response of vitiligo to narrowband ultraviolet B and oral antioxidants[J]. J Clin Pharmacol, 2009, 49(7): 852-855.
24
Lin Y, Ding Y, Wu Y, et al. The underestimated role of mitochondria in vitiligo: from oxidative stress to inflammation and cell death[J]. Exp Dermatol, 2024, 33(1): e14856.
25
Romano-lozano V, Cruz-avelar A, Pedrero ML. Nuclear factor erythroid 2-related factor 2 in vitiligo[J]. Actas Dermo-Sifilogr, 2022, 113(7): 705-711.
26
Arowojolu OA, Orlow SJ, Elbuluk N, et al. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone[J]. Exp Dermatol, 2017, 26(7): 637-644.
[1] 周圆圆, 周怡, 段亚阳, 张怡卿, 朱峰宇, 张超学. 低强度超声缓解顺铂所致小鼠卵巢损伤的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1132-1141.
[2] 汪秀静, 董梦婷, 盛佳钰, 江科. CDK4/6抑制剂致乳腺癌患者白癜风样皮损一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(05): 311-313.
[3] 王馨悦, 王卓然, 古丽莎. 氧化纳米铈促进氧化应激状态下口腔骨缺损修复的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 62-69.
[4] 李一萱, 李美和, 郑瑾. 肾移植缺血再灌注损伤机制及其对移植肾的影响[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 43-49.
[5] 白玉杰, 王枭, 林宁, 刘佳姣, 罗书泓, 冯健, 李福祥. 甲基胞嘧啶双加氧酶2 对低氧人脐静脉内皮细胞损伤的作用研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 369-374.
[6] 吕园园, 高辰旸, 徐永君. 纳米金棒对A549 细胞的毒性效应及其对自噬的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 20-29.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[9] 马利军, 王志彪, 费晓炜, 岳哲明, 雍佳, 汪鸿杰, 白杨红, 车路, 张洪晨, 李侠. 间歇性禁食通过促进Nrf2通路抑制氧化应激改善脑缺血/再灌注损伤[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(04): 220-229.
[10] 陈月阳, 王景景, 王淑莹, 杨以太, 李泽萌, 胡迪, 周蓬勃, 李伟, 任党利, 孙洪涛. 五苓散对缺氧大鼠高原脑水肿的改善作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 86-93.
[11] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[12] 唐建新, 邓晋, 谢威, 唐夏玉, 王斯旗. 星状神经节阻滞联合右美托咪定在胃肠手术中的麻醉效果及其与胃肠功能相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 405-411.
[13] 张昆, 梁秋华. 线粒体功能障碍在动脉中层钙化中的机制及治疗研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 171-176.
[14] 王坤宁, 尤旭颖, 张岱泽, 景燕燕, 张月林, 袁红霞. 食管鳞状细胞癌致病机制研究进展[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(04): 212-216.
[15] 庞淇丹, 崔玮, 唐涛, 姜德春, 李深. 检测脑缺血再灌注损伤的探针及技术进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 149-154.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?