切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2017, Vol. 11 ›› Issue (11) : 1894 -1901. doi: 10.3877/cma.j.issn.1674-0785.2017.11.007

所属专题: 文献

基础论著

骨髓间充质干细胞对大鼠痛风肾的修复作用
李娜1, 贾晓静2, 冯杏1, 韩艳3, 赵丽君4, 崔建军4,()   
  1. 1. 030001 太原,山西医科大学儿科医学系
    2. 518020 深圳市人民医院儿科
    3. 710061 西安,陕西省儿童医院新生儿监护室
    4. 030013 太原,山西省儿童医院肾脏内科
  • 收稿日期:2017-03-21 出版日期:2017-06-01
  • 通信作者: 崔建军
  • 基金资助:
    山西省科技攻关项目(20100311102-1)

Effect of bone marrow mesenchymal stromal cells on gout kidney

Na Li1, Xiaojing Jia2, Xing Feng1, Yan Han3, Lijun Zhao4, Jianjun Cui4,()   

  1. 1. Department of Pediatric, Shanxi Medical University, Taiyuan 030001, China
    2. Department of Pediatric, Shenzhen City People′s Hospital, Shenzhen 518020, China
    3. Department of Neonatal Intensive Care Unit, Shanxi Provincial Children′s Hospital, Xian 710061, China
    4. Department of Nephrology, Shanxi Provincial Children′s Hospital, Taiyuan 030013, China
  • Received:2017-03-21 Published:2017-06-01
  • Corresponding author: Jianjun Cui
  • About author:
    Corresponding author: Cui Jianjun, Email:
引用本文:

李娜, 贾晓静, 冯杏, 韩艳, 赵丽君, 崔建军. 骨髓间充质干细胞对大鼠痛风肾的修复作用[J]. 中华临床医师杂志(电子版), 2017, 11(11): 1894-1901.

Na Li, Xiaojing Jia, Xing Feng, Yan Han, Lijun Zhao, Jianjun Cui. Effect of bone marrow mesenchymal stromal cells on gout kidney[J]. Chinese Journal of Clinicians(Electronic Edition), 2017, 11(11): 1894-1901.

目的

探讨经鼠尾静脉移植的骨髓间充质干细胞(BM-MSCs)对大鼠痛风肾的影响,具体为延缓上皮到间叶组织转化(EMT)、促进肾脏细胞分化和生长,以及抗氧化应激等方面的作用。并进一步研究其相应的机制。

方法

幼年雄性Wistar大鼠随机分为正常组和造模组,造模组采用腺嘌呤200 mg/(kg?d)灌胃4周制作痛风肾大鼠模型,造模成功24 h后,造模组再次被随机分为3组,分别为磷酸盐缓冲液模型组和BM-MSCs治疗组,BM-MSCs治疗组经鼠尾静脉移植入骨髓间充质干细胞(BM-MSCs是经密度梯度离心法结合贴壁筛选法在体外分离培养而成),同时磷酸盐缓冲液(PBS)模型组经鼠尾静脉注入相同量的PBS。注射6周后,收集大鼠的血液和尿液标本用来测定血肌酐、尿素氮和24 h尿蛋白含量;对大鼠肾石蜡标本切片进行H-E染色、糖原染色和马松染色,观察并半定量评分评价各组肾病理情况;免疫组织化学法测定大鼠肾石蜡标本切片中的转化生长因子β1(TGF-β1)的表达水平,Western-Blot法测定肾组织中P38蛋白、P-P38蛋白、硫氧还蛋白还原酶1(TrxR1)的表达情况。数据经过正态性及方差齐性检验后,正常组和造模组两两比较采用LSD-t检验,3组之间比较采用单因素差分析。P<0.05表示差异有统计学意义。

结果

经腺嘌呤诱导制作的痛风肾大鼠相比正常组大鼠出现明显的肾功能降低,大量蛋白尿以及肾间质和肾小管尿酸结晶沉积,肾间质纤维化、炎症细胞浸润、肾小管上皮细胞坏死、肾小球硬化等,提示痛风肾模型制造成功,并出现了慢性肾功能衰竭;BM-MSCs治疗组较PBS模型组而言,血肌酐水平降低[(88.90±7.89)μmol/L vs.(117.40±6.13)μmol/L],尿素氮降低[(7.85±0.88)mmol/L vs.(10.97±1.03)mmol/L],24 h尿蛋白减少[(27.72±4.90)mg vs.(54.66±6.72)mg],TGF-β1表达减少[(11.00±2.28)个vs.(20.67±1.63)个],P-P38/P38比值降低[(0.31±0.09)μmol/L vs.(0.50±0.13)μmol/L],TrxR1/β-actin表达增加[(0.80±0.19)μmol/L vs.(0.41±0.23)μmol/L]。差异有统计学意义。

结论

BM-MSCs改善腺嘌呤诱导的痛风肾/慢性肾功能衰竭大鼠的肾功能,这可能与增加TrxR1的表达增加有关,TrxR1可以促进转分化、肾脏细胞生长并且具有抗氧化应激作用;同时与降低TGF-β1水平减轻EMT有关,此过程可能是通过抑制肿瘤坏死因子(TNF)-α/P-P38信号通路实现的。

Objective

The objective of this study was to investigate the effects of the intravenous transplantation of bone marrow mesenchymal stromal cells (BM-MSCs) on alleviating epithelial to mesenchymal transition (EMT) and promoting renal cell differentiation and growth and anti-oxidative stress in rats with gout kidney. Furthermore, the corresponding mechanisms were explored.

Material and Methods

A rat model with gout kidney was established by adenine inducing for 4 weeks. Immature male Wistar rats were randomly divided into control group, model group and treatment group. The BM-MSCs treatment group rats were injected with BM-MSCs via tail vein 24 h after the successful modeling, whereas the phosphate-buffered saline model group rats were injected with phosphate-buffered saline (PBS). Six weeks later, urine and blood were collected to assess 24-hour proteinuria, serum creatinine (Scr) and blood urea nitrogen (BUN). Immunohistochemistry was perfomed to determine the expression of transforming growth factor-β1 (TGF-β1). We used Western blot to determine protein expression of P-P38 /P38 and selenium-containing enzyme thioredoxin reductase 1 (TrxR1) in renal tissues. Statistical analysis of differences between the control group and the model group was performed using t-test, and the date of three groups (the control group, the BM-MSCs treatment group, the PBS model group) was calculated using analysis of variance (ANOVA). A value of P<0.05 was considered statistically significant.

Results

Rats with gout kidney induced by adenine were more likely to have mass proteinuria, deterioration of renal function and the histopathologic injury in the kidney, which implied that the gout kidney might evolve into chronic renal failure (CRF). Compared with the PBS model group, the level of indicators in BM-MSCs treatment group was signficantly lower including Scr [(88.90±7.89 μmol/L) vs. (117.40±6.13 μmol/L)], BUN [(7.85±0.88 mmol/L) vs. (10.97±1.03 mmol/L)], 24 hours proteinuria [(27.72±4.90 mg) vs. (54.66±6.72 mg)], TGF-β1 expression[(11.00±2.28) vs. (20.67±1.63)] and the ratio of P-P38 and P38 [(0.31±0.09 μmol/L) vs. (0.50±0.13 μmol/L)]. However, the ratio of TrxR1 and β-actin was increased in BM-MSCs treatment group [(0.80±0.19 μmol/L) vs. (0.41±0.23 μmol/L)].

Conclusion

BM-MSCs could alleviate the renal damages of adenine-induced gout kidney/chronic renal failure and improve the renal function by increasing the expression of TrxR1 which could promote renal cell differentiation and growth and anti-oxidative stress, or by decreasing the level of TGF-β1 that contributed to alleviating EMT, which wass mediated through supressing TNF-α/P38 signaling pathway.

表1 BM-MSCs对痛风肾大鼠肾功能的影响(±s
图1~9 移植BM-MSCs 6周后3组的肾组织病理情况。HE和PAS染色用来评价肾小球硬化,肾小管上皮细胞和炎症细胞情况,Masson染色评价肾间质纤维化,放大倍数为100倍
图15 TNF-α/P38信号通路参与激活TGFβ1诱导的EMT。用Western blot法测定P38 和P-P38表达
图17~18 BM-MSC通过分泌TrxR1促进细胞分化和新生。图17用Western blot法测定TrxR1表达,β-actin用作对照。图18比较TrxR1 /β-actin的灰度比值,结果以均数±标准差(±s)表示。aP<0.01,与正常组比较;bP<0.01,与PBS+CRF组比较
[1]
Kuo C, Grainge MJ, Mallen C, et al. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study [J]. Ann Rheum Dis, 2014, 1(10): 1-7.
[2]
Yü TF, Gutman AB. Uric acid nephrolithiasis in gout. Predisposing factors [J]. Ann Intern Med, 1967, 67(1): 1133-1148.
[3]
Liebman SE, Taylor JG, Bushinsky DA. Uric acid nephrolithiasis [J]. Curr Rheumatol Rep, 2007, 9(16): 251-257.
[4]
Parmar MS. Kidney stones [J]. BMJ, 2004, 328(1): 1420-1424.
[5]
Roughley MJ, Belcher J, Mallen CD, et al. Gout and risk of chronic kidney disease and nephr-olithiasis: meta-analysis of observational studies [J]. Arthritis Res Ther, 2015, 17(10): 90-96.
[6]
Neilson EG. Mechanisms of disease: fibroblasts-a new look at an old problem [J]. Nat Clin Pract Nephrol, 2006, 2(2): 101-108.
[7]
Sangidorj O, Yang SH, Jang HR, et al. Bone marrow- derivedendothelial progenitor cells confer renal protection in a murine chronic renal failure model [J]. Am J Physiol Renal Physiol, 2010, 299(2): 325-335.
[8]
Ham O, Lee CY, Kim R, et al. Therapeutic potential of differentiated mesenchymal stem cells for treatment of ost-eoarthritis [J]. Int J Mol Sci, 2015, 16(7): 14961-14978.
[9]
Herrera MB, Bussolati B, Bruno S, et al. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelia-l injury [J]. Int J Mol Med, 2004, 14(3): 1035-1041.
[10]
Jia XJ, Pan JB, Li N, et al. Bone marrow mesenchymal stromal cells ameliorate angiogenesis and re-nal damage via promoting PI3k-Akt signaling pathway activation in vivo [J]. Cytotherapy, 2016, 3(18): 838-845.
[11]
Yokoo T, Fukui A, Ohashi T, et al. Xenobiotic kidney organogenesis from human mesenchimal stem cells using a growi-ng rodent embryo [J]. Am Soc Nephrol, 2006, 17(1): 1026-1034.
[12]
Herrera MB, Bussolati B, Bruno S, et al. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelia-l injury [J]. Int J Mol Med, 2004, 14(6): 1035-1041.
[13]
Held PK, Al-Dhalimy M, Willenbring H, et al. In vivo genetic selection of renal proximal tubules [J]. Mol Ther, 2006, 13(1): 49-58.
[14]
Imberti B, Morigi M, Tomasoni S, et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair [J]. J Am Soc-Nephrol, 2007, 18(16): 2921-2928.
[15]
Asanuma HMD, Vanderbrink BA, Campbell MT, et al. Arterially Delivered Mesench-ymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis [J]. J Surg Res, 2011, 168(1): e51-e59.
[16]
韩艳,崔建军,李秀花, 等. CD45和CD90鉴定大鼠骨髓间充质干细胞 [J]. 中国药物与临床, 2014, 14(12): 1646-1647.
[17]
Fujihara CK, Antunes GR, Mattar AL, et al, Vieira attenuates renal injury in the 5/6 renal ablation model [J]. Am J Physiol Renal Physiol, 2007, 292(1): F92-99.
[18]
Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease [J]. Nephrol Dial Trans-plant, 2011, 26(4): 1132-1137.
[19]
Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, et al. Activation of mitochondrial apoptotic pathways in human renal al lografts after ischemia reperfusion injury [J]. Transplantation, 2003, 76(1): 50-54.
[20]
Yokoo T, Sakurai K, Ohashi T, et al. Stem cell gene therapy for chronic renal failure [J]. Curr Gene Ther, 2003, 5(6): 387-394.
[21]
Elberg G, Chen L, Elberg D, et al. MKL1 mediates TGF-beta1- induced alphasmooth muscle actin expression in huma-n renal epithelial cells [J]. Am J Physiol Renal Phy-siol, 2008, 294(5): F1116-1128.
[22]
Bani-Hani AH, Campbell MT, Meldrum DR, et al. Cytokines in epithelial-mesenchymal transition: a new insight into obstructive nephropathy [J]. J Urol, 2008, 180(1): 461-465.
[23]
Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase [J]. Eur J Biochem, 2000, 267(20): 6102-6109.
[24]
Cadenas C, Franckenstein D, Schmidt M, et al. Role of thioredoxin reductase 1 and thioredoxin interacting protein in p-rognosis of breast cancer [J]. Breast Cance-r Res, 2010, 12(3): 44-56.
[25]
Cunnea P, Fernandes AP, Capitanio A, et al. Increased expressionof specific thioredoxin family proteins; a pilot im-munohistochemical study on human hepatocellularcarcinoma [J]. Int J Immunopathol Pharmacol, 2007, 20(1): 17-24.
[26]
Lincoln DT, Ali Emadi EM, Tonissen KF, et al. The thioredoxin reductase system: overexpression in human cancer [J]. Anticancer Res, 2003, 23(3B): 2425-2433.
[27]
Lincoln DT, Al-Yatama F, Mohammed FM, et al. Thioredoxin and thioredoxin reductase expression in thyroid cancer depends on tumor aggressiveness [J]. Anticancer Res, 2010, 30(3): 767-775.
[28]
Björkhem-Bergman L, Ekström L, Eriksson LC, et al. Exploring Anticarcinogenic Agent sin a Rat Hepatocarcinogenesis Model - Focus on Selenium and Statins [J]. In vivo, 2012, 26(4): 527-535.
[29]
Yoo MH, Xu XM, Carlson BA, et al. Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells [J]. J Biol Chem, 2006, 281(19): 13005-13008.
[1] 唐博, 罗季平, 周桃, 黄多, 刘廷琼, 陈亚萍, 岳文胜. 慢性肾衰竭血液透析患者造瘘侧上肢肱动脉-指端微小动脉血流动力学变化特点分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1276-1281.
[2] 于秀章, 郄明蓉, 侯敏敏. 子宫内膜异位症与干细胞研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(02): 132-137.
[3] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[4] 赛甫丁·艾比布拉, 买买提·依斯热依力, 李义亮, 王永康, 王志, 克力木·阿不都热依木. 不同材质补片修补对腹壁疝大鼠腹横筋膜组织转化生长因子-β1及Collagen合成代谢的作用[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 161-167.
[5] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[6] 王强, 陈鑫, 翁小雪, 庄永泽, 俞国庆. 硫酸吲哚酚通过TGF-β1诱导腹膜间皮细胞转分化[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 329-334.
[7] 周艳群, 陈鹏, 刘增慧, 毛晶晶, 黎耀和. 多发性骨髓瘤患者骨髓间充质干细胞衰老关键基因和通路的生物信息学分析与验证[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 274-281.
[8] 夏杰, 唐紫萌, 吴向未. E-钙黏蛋白对血管内皮祖细胞和骨髓间充质干细胞之间的黏附作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 343-350.
[9] 刘一栋, 贾玉凤, 王燕, 刘扬, 宁金月. 大豆异黄酮上调Wnt-1基因表达促进骨髓间充质干细胞增殖和成骨分化的研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 292-297.
[10] 李应明, 陈华, 伍燕. K562来源的外泌体对骨髓间充质干细胞造血和成骨基因表达的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 207-214.
[11] 崔转云, 吕丽萍, 常栋. 彩色多普勒超声引导在慢性肾功能衰竭患者建立血液透析血管通路中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 205-209.
[12] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[13] 张艳, 秦方园, 赵荣, 钱文娟, 顾毅锋, 张亚兵. 富亮氨酸a2糖蛋白1与类风湿关节炎活动性的相关性[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1126-1130.
[14] 杨辉, 鲁利香, 易健, 易旭. 骨髓间充质干细胞及补脑Ⅰ号处理后血清对小鼠海马神经元缺氧缺糖模型ICAM-1、NF200表达的影响[J]. 中华临床医师杂志(电子版), 2022, 16(01): 100-106.
[15] 张威, 魏雅楠, 韩娜. 骨髓间充质干细胞来源外泌体对促进大鼠坐骨神经钳夹伤的修复作用[J]. 中华临床医师杂志(电子版), 2021, 15(04): 265-271.
阅读次数
全文


摘要