切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2017, Vol. 11 ›› Issue (12) : 1942 -1945. doi: 10.3877/cma.j.issn.1674-0785.2017.12.006

所属专题: 文献

综述

2型糖尿病胰岛素抵抗与肾素-血管紧张素-醛固酮系统的研究进展
莫翠瑶1, 刘云峰1,()   
  1. 1. 030001 太原,山西医科大学第一医院内分泌科
  • 收稿日期:2017-03-21 出版日期:2017-06-15
  • 通信作者: 刘云峰
  • 基金资助:
    国家自然科学基金(81273564、81373464、81670710); 山西省自然科学基金(201401143); 山西省回国留学人员科研资助项目(2013-111); 山西省留学回国人员科技活动项目择优资助(2016-97); 山西医科大学第一医院青年创新基金(YC1422); 中华医学会临床医学科研专项资金项目(13040440429)

Relationship between insulin resistance and renin-angiotensin-aldosterone system in type 2 diabetes mellitus

Cuiyao Mo1, Yunfeng Liu1,()   

  1. 1. Department of Endocrinology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2017-03-21 Published:2017-06-15
  • Corresponding author: Yunfeng Liu
  • About author:
    Corresponding author: Liu Yunfeng, Email:
引用本文:

莫翠瑶, 刘云峰. 2型糖尿病胰岛素抵抗与肾素-血管紧张素-醛固酮系统的研究进展[J/OL]. 中华临床医师杂志(电子版), 2017, 11(12): 1942-1945.

Cuiyao Mo, Yunfeng Liu. Relationship between insulin resistance and renin-angiotensin-aldosterone system in type 2 diabetes mellitus[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2017, 11(12): 1942-1945.

2型糖尿病(T2DM)是与过度消费高热量食物,缺乏运动和肥胖有关的疾病。胰岛素抵抗就是组织或细胞对胰岛素的反应能力减低。研究发现肾素-血管紧张素-醛固酮系统(RAAS)参与T2DM的发生发展,血管紧张素转化酶抑制剂(ACEI)或血管紧张素Ⅱ受体拮抗剂(ARB)类药物可延缓胰岛素抵抗的进展。然而目前对其机制研究仍不明确,本文针对这一问题进行总结。

Type 2 diabetes mellitus (T2DM) is a disease related to over-consumption of high-calorie foods, lack of exercise, and obesity. Insulin resistance is a state that tissue or cell responsiveness to insulin decreases. Previous studies have found that the renin-angiotensin aldosterone system (RAAS) is involved in the development of T2DM. Angiotensin converting enzyme inhibitors (ACEI) or angiotensin II receptor antagonists (ARB) can delay the progression of insulin resistance, but the underlying mechanisms are still unclear. This paper reviews the recent progress in the understanding of the relationship between insulin resistance and the RAAS in T2DM.

[1]
Folli F, Kahn CR, Hansen H, et al. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk [J]. J Clin Invest, 1997, 100(9): 2158-2169.
[2]
Motley ED, Eguchi K, Gardner C, et al. Insulin-induced Akt activation is inhibited by angiotensin II in the vasculature through protein kinase C-alpha [J]. Hypertension, 2003, 41(3 Pt 2): 775-780.
[3]
Simon F, Varela D, Cabello-Verrugio C, et al. Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans [J]. Cell Signal, 2013, 25(7): 1614-1624.
[4]
Wei Y, Sowers JR, Clark SE, et, al. Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase [J]. Am J Physiol Endocrinol Metab, 2008, 294(2): E345-351.
[5]
Csibi, Communi D, Muller N, et al. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms [J]. PLoS One, 2010, 5(4): e10070.
[6]
Diamond-Stanic MK, Henriksen EJ. Direct inhibition by angiotensin Ⅱ of insulin-dependent glucose transport activity in mammalian skeletal muscle involves a ROS-dependent mechanism [J]. Arch Physiol Biochem, 2010, 116(2): 88-95.
[7]
Blair AB, Hajduch E, Litherland GJ, et, al. Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress. Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J]. J Biol Chem, 1999, 274(51): 36293-36299.
[8]
Santos FR, Diamond-Stanic MK, Prasannarong M, et al. Contribution of the serine kinase c-Jun N-terminal kinase(JNK) to oxidant-induced insulin resistance in isolated rat skeletal muscle [J]. Arch Physiol Biochem, 2012, 118(5): 231-236.
[9]
Skurk T, van Harmelen V, Hauner H, et al. Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB [J]. Arterioscler Thromb Vasc Biol, 2004, 24(7): 1199-1203.
[10]
Asamizu S, Urakaze M, Kobashi C, et, al. Angiotensin II enhances the increase in monocyte chemoattractant protein-1 production induced by tumor necrosis factor-{alpha} from 3T3-L1 preadipocytes [J]. J Endocrinol, 2009, 202(2): 199-205.
[11]
Lee MH, Song HK, Ko GJ, et, al. Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue [J]. Kidney Int, 2008, 74(7): 890-900.
[12]
Tikellis, Wookey PJ, Candido R, et, al. Improved islet morphology after blockade of the renin- angiotensin system in the ZDF rat [J]. Diabetes, 2004, 53(4): 989-997.
[13]
Leung PS, Carlsson PO. Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus [J]. Pancreas, 2005, 30(4): 293-298.
[14]
Darimont, G. Vassaux, G. Ailhaud, et, al. Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-Ⅱ [J]. Endocrinology, 1994, 135(5): 2030-2036.
[15]
Fuentes P, Acuna MJ, Cifuentes M, et al. The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1, 2 activation and PPARG phosphorylation [J]. J Endocrinol, 2010, 206(1): 75-83.
[16]
Mazak, Fiebeler A, Muller DN, et al. Aldosterone potentiates angiotensin Ⅱ-induced signaling in vascular smooth muscle cells [J]. Circulation, 2004, 109(22): 2792-2800.
[17]
Ishizawa, Izawa Y, Ito H, et, al. Aldosterone stimulates vascular smooth muscle cell proliferation via big mitogen-activated protein kinase 1 activation [J]. Hypertension, 2005, 46(4): 1046-1052.
[18]
Fu GX, Xu CC, Zhong Y, et, al. Aldosterone-induced osteopontin expression in vascular smooth muscle cells involves MR, ERK, and p38 MAPK [J]. Endocrine, 2012, 42(3): 676-683.
[19]
Miyata K, Hitomi H, Guo P, et, al. Possible involvement of Rho-kinase in aldosterone-induced vascular smooth muscle cell remodeling [J]. Hypertens Res, 2008, 31(7): 1407-1413.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[3] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[4] 赖圣杰, 方欣, 方友强. 2023年欧洲内分泌学会及加拿大泌尿外科学会肾上腺偶发瘤诊疗指南解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 309-312.
[5] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[6] 陆文琪, 赵艳茹, 李焕娣, 樊欣娜, 王佳, 李萍. 2型糖尿病患者血清SMAD2和SOX6表达及其与蛋白尿的关系[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 145-151.
[7] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[8] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[9] 孙秀芹, 高美娟, 张琼阁, 吕凯敏, 王宏宇. 京西地区无心血管病史2型糖尿病中老年人群患心血管疾病的危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 245-252.
[10] 何玉花, 钟欢妹, 王文惠, 沈永棋, 刘映云, 顾国威, 陈丹娜. 不同表型多囊卵巢综合征患者代谢指标及肥胖相关指标对多囊卵巢综合征合并代谢综合征人群的诊断效能分析[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 212-220.
[11] 吴晓明, 翟仰魁, 王娟, 张硕, 许杰, 潘从清. 男性2 型糖尿病患者空腹C 肽和定量胰岛素敏感性检测指数与血浆致动脉粥样硬化指数的相关性[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 288-294.
[12] 张杨杨, 项楚淇, 朱满生. 肌少性肥胖与非酒精性脂肪性肝病间的关系以及研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 276-282.
[13] 张梅, 陈卉, 李转霞, 王瑞, 李林娟. Metrnl和NLRP3炎症小体:糖尿病肾病的潜在诊断标志物[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 193-199.
[14] 吴子龙, 吴冰, 袁开盛, 胡瑞翔, 杨华, 王存川. 肥胖与胰腺疾病研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 213-219.
[15] 崔磊, 徐东升. 减重手术治疗肥胖患者胰岛素抵抗的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 127-132.
阅读次数
全文


摘要