切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2017, Vol. 11 ›› Issue (12) : 1942 -1945. doi: 10.3877/cma.j.issn.1674-0785.2017.12.006

所属专题: 文献

综述

2型糖尿病胰岛素抵抗与肾素-血管紧张素-醛固酮系统的研究进展
莫翠瑶1, 刘云峰1,()   
  1. 1. 030001 太原,山西医科大学第一医院内分泌科
  • 收稿日期:2017-03-21 出版日期:2017-06-15
  • 通信作者: 刘云峰
  • 基金资助:
    国家自然科学基金(81273564、81373464、81670710); 山西省自然科学基金(201401143); 山西省回国留学人员科研资助项目(2013-111); 山西省留学回国人员科技活动项目择优资助(2016-97); 山西医科大学第一医院青年创新基金(YC1422); 中华医学会临床医学科研专项资金项目(13040440429)

Relationship between insulin resistance and renin-angiotensin-aldosterone system in type 2 diabetes mellitus

Cuiyao Mo1, Yunfeng Liu1,()   

  1. 1. Department of Endocrinology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2017-03-21 Published:2017-06-15
  • Corresponding author: Yunfeng Liu
  • About author:
    Corresponding author: Liu Yunfeng, Email:
引用本文:

莫翠瑶, 刘云峰. 2型糖尿病胰岛素抵抗与肾素-血管紧张素-醛固酮系统的研究进展[J]. 中华临床医师杂志(电子版), 2017, 11(12): 1942-1945.

Cuiyao Mo, Yunfeng Liu. Relationship between insulin resistance and renin-angiotensin-aldosterone system in type 2 diabetes mellitus[J]. Chinese Journal of Clinicians(Electronic Edition), 2017, 11(12): 1942-1945.

2型糖尿病(T2DM)是与过度消费高热量食物,缺乏运动和肥胖有关的疾病。胰岛素抵抗就是组织或细胞对胰岛素的反应能力减低。研究发现肾素-血管紧张素-醛固酮系统(RAAS)参与T2DM的发生发展,血管紧张素转化酶抑制剂(ACEI)或血管紧张素Ⅱ受体拮抗剂(ARB)类药物可延缓胰岛素抵抗的进展。然而目前对其机制研究仍不明确,本文针对这一问题进行总结。

Type 2 diabetes mellitus (T2DM) is a disease related to over-consumption of high-calorie foods, lack of exercise, and obesity. Insulin resistance is a state that tissue or cell responsiveness to insulin decreases. Previous studies have found that the renin-angiotensin aldosterone system (RAAS) is involved in the development of T2DM. Angiotensin converting enzyme inhibitors (ACEI) or angiotensin II receptor antagonists (ARB) can delay the progression of insulin resistance, but the underlying mechanisms are still unclear. This paper reviews the recent progress in the understanding of the relationship between insulin resistance and the RAAS in T2DM.

[1]
Folli F, Kahn CR, Hansen H, et al. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk [J]. J Clin Invest, 1997, 100(9): 2158-2169.
[2]
Motley ED, Eguchi K, Gardner C, et al. Insulin-induced Akt activation is inhibited by angiotensin II in the vasculature through protein kinase C-alpha [J]. Hypertension, 2003, 41(3 Pt 2): 775-780.
[3]
Simon F, Varela D, Cabello-Verrugio C, et al. Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans [J]. Cell Signal, 2013, 25(7): 1614-1624.
[4]
Wei Y, Sowers JR, Clark SE, et, al. Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase [J]. Am J Physiol Endocrinol Metab, 2008, 294(2): E345-351.
[5]
Csibi, Communi D, Muller N, et al. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms [J]. PLoS One, 2010, 5(4): e10070.
[6]
Diamond-Stanic MK, Henriksen EJ. Direct inhibition by angiotensin Ⅱ of insulin-dependent glucose transport activity in mammalian skeletal muscle involves a ROS-dependent mechanism [J]. Arch Physiol Biochem, 2010, 116(2): 88-95.
[7]
Blair AB, Hajduch E, Litherland GJ, et, al. Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress. Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J]. J Biol Chem, 1999, 274(51): 36293-36299.
[8]
Santos FR, Diamond-Stanic MK, Prasannarong M, et al. Contribution of the serine kinase c-Jun N-terminal kinase(JNK) to oxidant-induced insulin resistance in isolated rat skeletal muscle [J]. Arch Physiol Biochem, 2012, 118(5): 231-236.
[9]
Skurk T, van Harmelen V, Hauner H, et al. Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB [J]. Arterioscler Thromb Vasc Biol, 2004, 24(7): 1199-1203.
[10]
Asamizu S, Urakaze M, Kobashi C, et, al. Angiotensin II enhances the increase in monocyte chemoattractant protein-1 production induced by tumor necrosis factor-{alpha} from 3T3-L1 preadipocytes [J]. J Endocrinol, 2009, 202(2): 199-205.
[11]
Lee MH, Song HK, Ko GJ, et, al. Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue [J]. Kidney Int, 2008, 74(7): 890-900.
[12]
Tikellis, Wookey PJ, Candido R, et, al. Improved islet morphology after blockade of the renin- angiotensin system in the ZDF rat [J]. Diabetes, 2004, 53(4): 989-997.
[13]
Leung PS, Carlsson PO. Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus [J]. Pancreas, 2005, 30(4): 293-298.
[14]
Darimont, G. Vassaux, G. Ailhaud, et, al. Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-Ⅱ [J]. Endocrinology, 1994, 135(5): 2030-2036.
[15]
Fuentes P, Acuna MJ, Cifuentes M, et al. The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1, 2 activation and PPARG phosphorylation [J]. J Endocrinol, 2010, 206(1): 75-83.
[16]
Mazak, Fiebeler A, Muller DN, et al. Aldosterone potentiates angiotensin Ⅱ-induced signaling in vascular smooth muscle cells [J]. Circulation, 2004, 109(22): 2792-2800.
[17]
Ishizawa, Izawa Y, Ito H, et, al. Aldosterone stimulates vascular smooth muscle cell proliferation via big mitogen-activated protein kinase 1 activation [J]. Hypertension, 2005, 46(4): 1046-1052.
[18]
Fu GX, Xu CC, Zhong Y, et, al. Aldosterone-induced osteopontin expression in vascular smooth muscle cells involves MR, ERK, and p38 MAPK [J]. Endocrine, 2012, 42(3): 676-683.
[19]
Miyata K, Hitomi H, Guo P, et, al. Possible involvement of Rho-kinase in aldosterone-induced vascular smooth muscle cell remodeling [J]. Hypertens Res, 2008, 31(7): 1407-1413.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 季瑞冬, 卢振权, 罗兵锋, 侯健, 董汝男, 廖苏才, 罗光彦, 梁伟, 张可可, 郭敏姗, 卢捷娜, 吴旻, 杨伟洪. 无创诊断方法在原发性醛固酮增多症分型诊断中的应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 186-191.
[3] 胡守芳, 吴霞, 陈与知. 司美格鲁肽联合头孢哌酮钠舒巴坦治疗2型糖尿病并发肺炎的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 43-46.
[4] 郭庆, 李冠琳, 刘慧, 魏炜, 于洋, 张纯. 脂肪间充质干细胞治疗糖尿病及其慢性并发症的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 58-62.
[5] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[6] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[7] 韩家超, 王飞飞, 柳子宁, 胡冀陶, 孟泽松, 雒月云, 王贵英. 二甲双胍的作用机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(03): 349-355.
[8] 李娜, 李军, 郭李平, 王海雄. 血管紧张素受体脑啡肽酶抑制剂在心律失常患者中的应用[J]. 中华心脏与心律电子杂志, 2023, 11(01): 39-44.
[9] 汪赓, 夏泽锋, 陶凯雄. 代谢手术在非肥胖型2型糖尿病中的治疗效果及研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 155-160.
[10] 李锦亮, 曾茂娟, 钟金宝, 何伟强, 林文新. 司美格鲁肽对肥胖2型糖尿病患者皮肤微循环功能的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 192-196.
[11] 秦梧耀, 高文惠, 崔浩, 尚吉文. 醛固酮与脂肪关系的研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 209-214.
[12] 戚晓阳, 杨平, 杜忠秋, 邱旭升, 汤黎明, 陈一心. 袖状胃切除术对肥胖合并2型糖尿病大鼠模型骨密度的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 102-108.
[13] 穆曼娜, 胡莹清, 李远, 张勇军, 胡细玲, 林倍思, 刘德昭. 氯雷他定联用普瑞巴林治疗2型糖尿病皮肤瘙痒症的临床效果评价[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 114-119.
[14] 秦晓光, 毛忠琦, 周晓庆, 谢尔凡, 吴国强, 张敏, 李威杰. 单吻合口胃旁路术对于肥胖及糖尿病患者心脑血管风险的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 120-125.
[15] 张金娜, 盖家宁, 李影. 脂质运载蛋白2在肥胖症及相关疾病中的作用研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 50-54.
阅读次数
全文


摘要