切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2017, Vol. 11 ›› Issue (13) : 1993 -1996. doi: 10.3877/cma.j.issn.1674-0785.2017.13.007

所属专题: 文献

综述

硅酸盐/磷酸盐复合型骨水泥的研究现状及新进展
谭亚运1, 张民1,()   
  1. 1. 030001 太原,山西医科大学第二医院骨科
  • 收稿日期:2017-03-06 出版日期:2017-07-01
  • 通信作者: 张民
  • 基金资助:
    山西省卫生计生委科研计划项目(2015039)

Advances in research of silicate/phosphate composite bone cement

Yayun Tan1, Min Zhang1,()   

  1. 1. Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2017-03-06 Published:2017-07-01
  • Corresponding author: Min Zhang
  • About author:
    Corresponding author: Zhang Min, Email:
引用本文:

谭亚运, 张民. 硅酸盐/磷酸盐复合型骨水泥的研究现状及新进展[J]. 中华临床医师杂志(电子版), 2017, 11(13): 1993-1996.

Yayun Tan, Min Zhang. Advances in research of silicate/phosphate composite bone cement[J]. Chinese Journal of Clinicians(Electronic Edition), 2017, 11(13): 1993-1996.

骨水泥广泛应用于骨科手术中,但临床使用较多的传统磷酸盐骨水泥具有机械强度低等缺陷。近年来硅酸盐/磷酸盐复合骨水泥的研究取得了重大进展且受到广泛关注。本文综述了国内外对该复合骨水泥的研究现状及新进展。研究表明硅酸盐/磷酸盐复合骨水泥不仅具有较高的机械强度,还具有良好的生物活性和生物相容性,同时加入其他物质对其进行的改性研究进一步优化了复合骨水泥的性质,相信其在将来可作为性质完美的骨水泥应用于临床。

Bone cement is widely used in orthopedics operations, but the traditional phosphate bone cement has many disadvantages such as low mechanical strength. In recent years, great progress has been made in the research of silicate/phosphate composite bone cement, which has attracted wide attention. In this paper, we review the recent advances in the research of the silicate/phosphate composite bone cement. The silicate/phosphate composite bone cement not only has good mechanical strength, but also has good biocompatibility and biological activity. The properties of composite bone cement can be further optimized by the addition of other materials. It is believed that the silicate/phosphate composite bone cement can be used as a perfect bone cement in the future.

[1]
杨玉生,孙俊英. 生物活性玻璃促进骨修复的骨移植替代材料 [J]. 中国临床康复, 2005, 9(42): 108-112.
[2]
Bohner M, Baroud G. Injectability of calcium phosphate pastes [J]. Biomaterials, 2005, 26(13): 1553-1563.
[3]
Chen CK, Ju CP, Lin JH. Setting solution concentration effect on properties of a TTCP/DCPA-derived calcium phosphate cement [J]. J Mater Sci Mater Med, 2012, 23(9): 2009-2114.
[4]
Li L, Peng X, Qin Y, et al. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/Calcium phosphate cement in osteoporosis [J]. Sci Rep, 2017, 7: 45204.
[5]
Duan X, Liao HX, Zou HZ et al. An injectable, biodegradable calcium phosphate cement containing poly lactic-co-glycolic acid as a bone substitute in ex vivo human vertebral compression fracture and rabbit bone defect models [J]. Connect Tissue Res, 2017, 7: 1-11.
[6]
Pietak AM, Reid JW, Stott MJ, et al. Silicon substitution in the calcium Phosphate bioceramics [J]. Biomaterials, 2007, 28(28): 4023-4032.
[7]
Motisuke M, Santos VR, Bazanini NC, et al. Apatite bone cement reinforced with calcium silicate fibers [J]. Mater Med, 2014, 25(10): 2357-2363.
[8]
Huan Z, Chang J. Calcium-phosphate-silicate composite bone cement: self-setting properties and in vitro bioactivity [J]. J Mater Sci Mater Med, 2014, 25(10): 2357-2363.
[9]
张亚楠,胡雁,杨洪, 等.含硅磷酸钙骨水泥的理化性质及体外细胞毒性 [J].分子科学学报, 2014, 30(5): 376-382.
[10]
Liu W, Zhai D, Huan Z, et al. Novel tricalcium silicate/magnesium phosphate composite bone cement: having high compressive strength, in vitro bioactivity and cytocompatibility [J]. Acta Biomater, 2015, 21: 217-227.
[11]
Wang X, Ye J, Wang Y, et al. Self-setting properties of a beta-dicalcium silicate reinforced calcium phosphate cement [J]. J Biomed Mater Res B Appl Biomater, 2007, 82(1): 93-99.
[12]
杨洪,胡雁,张亚楠. 硅磷酸钙复合骨水泥对L929细胞增殖相关基因表达的影响 [J]. 生命科学研究, 2014, 18(2):134-139.
[13]
Lee DW, Kwak IS, Lee SB, et al. Post-treatment effects of erythropoietin and nordihydroguaiaretic acid on recovery from cisplatin-induced acute renal failure in the rat [J]. J Korean Med Sci, 2009, 24(S1): 170-175.
[14]
Ino H, Chiba T. Expression of proliferating cell nuclear antigen (PCNA) in the adult and developing mouse nervous system [J]. Brain Res Mol Brain Res, 2000,78(1-2): 163-174.
[15]
Schilling B, Murray J, Yoo CB, et al. Proteomic analysis of succinate dehy- drogenase and ubiquinol-cytochrom reductase (ComplexⅡ and Ⅲ) isolated by immunoprecipitation from bovine and mouse heart mitochondria [J]. Biochimica et Biophysica Acta, 2006, 1762(2): 213-222.
[16]
Zhao WY, Wang JY, Zhai WY, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate [J]. Bio-materials, 2005, 26(31): 6113-6121.
[17]
Robb-Gaspers LD, Burnett P, Rutter GA, et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses [J]. EMBO J, 1998, 17(17): 4987-5000.
[18]
Morejo′n-Alonso L, Ferreira OJ, Carrodeguas RG, et al. Bioactive composite bone cement based on α-tricalcium phosphate/ tricalcium silicate [J]. J Biomed Mater Res B Appl Biomater, 2012, 100(1): 94-102.
[19]
Kao CT, Huang TH, Chen YJ, et al. Using calcium silicate to regulate the physicochemical and biologicalproperties when using β-tricalcium phosphate as bone cement [J]. Mater Sci Eng C, 2014, 43: 126-134.
[20]
Zhao Q, Qian J, Zhou H, et al. In vitro osteoblast-like and endothelialcells′ response tocalcium silicate/calcium phosphate cement [J]. Biomed Mater, 2010, 5(3): 35004.
[21]
Guo H, Wei J, Song W, et al. Wollastonite nanofiber-doped self-setting calcium phosphate bioactive cement for bone tissue regeneration [J]. Int J Nanomedicine, 2012, 7: 3613-3624.
[22]
Guo H, Wei J, Yuan Y, et al. Development of calcium silicate/calcium phosphate cement for bone regeneration [J]. Biomed Mater, 2007, 2(3): S153-S159.
[23]
朱海波,马南,钟务学. 硅酸盐可吸收性骨水泥的动物体内生物学评价 [J]. 实用骨科杂志, 2015, 21(10):902-906.
[24]
Paul K, Lee BY, Abueva C, et al. In vivo evaluation of injectable calcium phosphate cement composed of Zn- and Si-incorporated β-tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle [J]. J Biomed Mater Res B Appl Biomater, 2017 , 105(2): 260-271.
[25]
Shen Q, Sun J, Wu J, et al. An in vitro investigation of the mechanical-chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping [J]. J Biomed Mater Res B Appl Biomater, 2010, 94(1): 141-148.
[26]
Correa D, Almirall A, Carrodeguas RG, et al. α-Tricalcium phosphate cements modified with β-dicalcium silicate and tricalcium aluminate: Physicochemical characterization, in vitro bioactivity and cytotoxicity [J]. J Biomed Mater Res B Appl Biomater, 2015, 103(1): 72-83.
[27]
Zhang J, Zhou H, Yang K, et al. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration [J]. Biomaterials, 2013, 34(37): 9381-9392.
[28]
李翠笛,陈芳萍,王金武, 等. 负载rhBM P-2钙磷硅基活性骨修复材料的3D打印构建及生物学性能研究 [J]. 国际骨科学杂志, 2015, 36(3):187-194.
[29]
Huang MH, Kao CT, Chen YW, et al. The synergistic effects of chinese herb and injectable calcium silicate/b-tricalcium phosphate composite on an osteogenic accelerator in vitro [J]. J Mater Sci Mater Med, 2015, 26(4): 161.
[1] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[2] 王华溢, 杨重飞, 陈永锋, 孙强, 朱锦宇, 张大伟, 朱庆生. 二期翻修治疗培养阴性膝关节假体周围感染[J]. 中华关节外科杂志(电子版), 2021, 15(06): 680-686.
[3] 于承浩, 张益, 陈进利, 戚超, 李海峰, 于腾波. 肩袖补片在巨大肩袖损伤治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(02): 225-230.
[4] 周雪明, 刘彬, 陈庆槐, 吴润柏, 陈志坚. 半髋柄固定方式对高龄股骨颈骨折疗效的影响[J]. 中华关节外科杂志(电子版), 2020, 14(05): 527-533.
[5] 李敏, 熊菲. 母乳成分及其影响因素的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 267-272.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 钟云雪, 李莉, 王达利, 唐铭远, 彭晓峰, 陈伟, 胡春, 黄广涛, 魏在荣. 扩创联合抗生素骨水泥在严重感染糖尿病足溃疡治疗中的应用研究[J]. 中华损伤与修复杂志(电子版), 2022, 17(01): 60-64.
[8] 王晟, 许卓然, 夏德萌, 李磊, 许硕贵. 穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 166-169.
[9] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[10] 刘兵, 马翔宇, 杨超, 周大鹏. 应用Philos钢板联合个体化髓内解剖型骨水泥占位器治疗老年骨质疏松性肱骨近端骨折的临床疗效[J]. 中华肩肘外科电子杂志, 2022, 10(04): 293-299.
[11] 于茜, 周建辉, 赵小淋, 谢大洋, 曹雪莹. 血液净化膜材料的临床发展[J]. 中华肾病研究电子杂志, 2021, 10(02): 103-108.
[12] 张乾龙, 王继荣, 宋晨辉, 刘修信, 任政, 刘宇哲, 阿里木江·玉素甫, 覃祺, 冉建. 两种髓内钉固定A3.1粗隆间骨折的有限元分析:增强型PFNA与InterTan[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 209-217.
[13] 刘军, 方振林. PKP术中不同注入量高粘度骨水泥治疗骨质疏松性腰椎骨折的疗效分析[J]. 中华老年骨科与康复电子杂志, 2022, 08(01): 18-23.
[14] 焦力刚, 张雷, 王卫友. 骨水泥型与非骨水泥型人工半髋关节置换术治疗高龄股骨颈骨折患者的对比研究[J]. 中华老年骨科与康复电子杂志, 2020, 06(05): 265-270.
[15] 陈露, 徐蓉, 吴嘉铭, 罗一宁, 廖建成, 李孟辉, 陈克恩, 张茂营. 颅内磷酸盐尿性间叶性肿瘤致骨软化症一例报道并文献复习[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 54-57.
阅读次数
全文


摘要