切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2017, Vol. 11 ›› Issue (23) : 2454 -2457. doi: 10.3877/cma.j.issn.1674-0785.2017.23.006

所属专题: 文献

综述

肝微环境在消化系肿瘤肝转移中的作用及调控机制
肖华1,(), 肖艳平2   
  1. 1. 410013 长沙,湖南省肿瘤医院 中南大学湘雅医学院附属肿瘤医院胃十二指肠胰腺外科
    2. 410010 长沙卫生职业学院
  • 收稿日期:2017-11-02 出版日期:2017-12-01
  • 通信作者: 肖华
  • 基金资助:
    湖南省卫生计生委2017年度科研计划课题项目(B2017101)

Role of liver microenvironment in liver metastasis of digestive system malignancies and the underlying mechanism

Hua Xiao1,(), Yanping Xiao2   

  1. 1. Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha 410013, China
    2. Department of Admissions and Employment, Changsha Health Vocational College, Changsha 410010, China
  • Received:2017-11-02 Published:2017-12-01
  • Corresponding author: Hua Xiao
  • About author:
    Corresponding author: Xiao Hua, Email:
引用本文:

肖华, 肖艳平. 肝微环境在消化系肿瘤肝转移中的作用及调控机制[J/OL]. 中华临床医师杂志(电子版), 2017, 11(23): 2454-2457.

Hua Xiao, Yanping Xiao. Role of liver microenvironment in liver metastasis of digestive system malignancies and the underlying mechanism[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2017, 11(23): 2454-2457.

肝因其丰富的血供和特殊的解剖位置,是消化系肿瘤最常见的转移部位。近年的研究发现,肝转移前微环境的调控,如各种细胞的活化、免疫反应的调节和细胞因子水平的变化,在消化系肿瘤肝转移的发生和发展中起着决定性的作用。针对肝微环境开展肿瘤免疫治疗,或许可以为消化系肿瘤肝转移的防治提供新的思路。

The liver is the most common metastatic site of digestive system malignancies, mainly due to its special anatomical position and rich blood supply. Growing evidence has showed that the pre-metastatic microenvironment of the liver, such as activation of various cells, modification of immune response, and adjustment of cytokine concentrations, plays an essential role in the occurrence and progression of liver metastasis of digestive tract malignancies. Targeting the pre-metastatic microenvironment of the liver during cancer immunotherapy appears to be a new strategy for preventing and managing liver metastasis of digestive system malignancies.

[1]
van den Eynden GG,Majeed AW,Illemann M, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications[J]. Cancer Res, 2013, 73(7): 2031-2043.
[2]
Chen W,Zheng R,Baade PD, et al. Cancer statistics in China, 2015[J].CA Cancer J Clin, 2016, 66(2): 115-132.
[3]
Brodt P. Role of the Microenvironment in liver metastasis: from pre-to prometastatic niches[J]. Clin Cancer Res, 2016, 22(24): 5971-5982.
[4]
Martin OA,Anderson RL,Narayan K, et al. Does the mobilization of circulating tumour cells during cancer therapy cause metastasis?[J].Nat Rev Clin Oncol, 2017, 14(1): 32-44.
[5]
Zvibel I,Wagner A,Pasmanik-Chor M, et al. Transcriptional profiling identifies genes induced by hepatocyte derived extracellular matrix in metastatic human colorectal cancer cell lines[J].Clin Exp Metastasis, 2013, 30(2): 189-200.
[6]
Li H,Fan X,Stoicov C, et al. Human and mouse colon cancer utilizes CD95 signaling for local growth and metastatic spread to liver[J]. Gastroenterology, 2009, 137(3): 934-944.
[7]
Wang N,Rayes RF,Elahi SM, et al. The IGF-Trap: novel inhibitor of carcinoma growth and metastasis[J]. Mol Cancer Ther, 2015, 14(4): 982-993.
[8]
Kang N,Gores GJ,Shah VH. Hepatic stellate cells: partners in crime for liver metastases?[J]. Hepatology, 2011, 54(2): 707-713.
[9]
Tien YW,Wu YM,Lin WC, et al. Pancreatic carcinoma cells stimulate proliferation and matrix synthesis of hepatic stellate cells[J].J Hepatol, 2009, 51(2): 307-314.
[10]
Kim Y,Kim MO,Shin JS, et al. Hedgehog signaling between cancer cells and hepatic stellate cells in promoting cholangiocarcinoma[J]. Ann Surg Oncol, 2014, 21(8): 2684-2698.
[11]
Matsusue R,Kubo H,Hisamori S, et al. Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis[J]. Ann Surg Oncol, 2009, 16(9): 2645-2653.
[12]
Costa-Silva B,Aiello NM,Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015, 17(6): 816-826.
[13]
Nielsen SR,Quaranta V,Linford A, et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis[J]. Nat Cell Biol, 2016, 18(5): 549-560.
[14]
刘虎, 杨家和, 苏长青. 肝星状细胞与肿瘤肝转移的研究进展[J].临床肿瘤学杂志, 2012, 17(4): 360-363.
[15]
Bayon LG,Izquierdo MA,Sirovich I, et al. Role of Kupffer cells in arresting circulating tumor cells and ontrolling metastatic growth in the liver[J]. Hepatology, 1996, 23(5): 1224-1231.
[16]
Kimura Y,Inoue A,Hangai S, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis[J]. Proc Natl Acad Sci USA, 2016, 113(49): 14097-14102.
[17]
Matsumura H,Kondo T,Ogawa K, et al. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage[J]. Int J Oncol, 2014, 45(6): 2303-2310.
[18]
Paschos KA,Majeed AW,Bird NC. Role of Kupffer cells in the outgrowth of colorectal cancer liver metastases[J]. Hepatol Res, 2010, 40(1): 83-94.
[19]
Wen SW,Ager EI,Christophi C. Bimodal role of Kupffer cells during colorectal cancer liver metastasis[J]. Cancer Biol Ther, 2013, 14(7): 606-613.
[20]
Thomas P,Forse RA,Bajenova O. Carcinoembryonic antigen (CEA) and its receptor hnRNP M are mediators of metastasis and the inflammatory response in the liver[J]. Clin Exp Metastasis, 2011, 28(8): 923-932.
[21]
Braet F,Nagatsuma K,Saito M, et al. The hepatic sinusoidal endothelial lining and colorectal liver metastases[J]. World J Gastroenterol, 2007, 13(6): 821-825.
[22]
Wang HH,McIntosh AR,Hasinoff BB, et al. B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis[J]. Cancer Res, 2000, 60(20): 5862-5869.
[23]
Glinskii OV,Huxley VH,Glinsky GV, et al. Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs[J]. Neoplasia, 2005, 7(5): 522-527.
[24]
Berg M,Wingender G,Djandji D, et al. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8 T cell tolerance[J]. Eur J Immunol, 2006, 36(11): 2960-2970.
[25]
Höchst B,Schildberg FA,Böttcher J, et al. Liver sinusoidal endothlial cells contribute to CD8 T cell tolerance toward circulating carsinoembryonic antigen in mice[J]. Hepatology, 2012, 56(5):1924-1933.
[26]
Carambia A,Freund B,Schwinge D, et al. TGF-β-dependent induction of CD4+CD25+Foxp3+Tregs by liver sinusoidal endothelial cells[J]. J Hepatol, 2014, 61(3): 594-599.
[27]
Ou J,Peng Y,Deng J, et al. Endothelial cell-derived fibronectin extra domain A promotes colorectal cancer metastasis via inducing epithelial-mesenchymal transition[J]. Carcinogenesis, 2014, 35(7): 1661-1670.
[28]
Liang W,Ferrara N. The complex roles of neutrophils in tumor angiogenesis and metastasis[J]. Cancer Immunol Res, 2016, 4(2): 83-91.
[29]
Tohme S,Yazdani HO,Al-Khafaji AB, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress[J]. Cancer Res, 2016, 76(6): 1367-1380.
[30]
Ham B,Wang N,D′Costa Z, et al. TNF receptor-2 facilitates an immunosuppressive microenvironment in the liver to promote the colonization and growth of hepatic metastases[J]. Cancer Res, 2015, 75(24): 5235-5247.
[31]
Zhao L,Lim SY,Gordon-Weeks AN, et al. Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis[J]. Hepatology, 2013, 57(2): 829-839.
[32]
Gabrilovich DI. Myeloid-derived suppressor cells[J]. Cancer Immunol Res, 2017, 5(1): 3-8.
[33]
黄晓明, 练磊, 吴小剑, 等. 结直肠癌肝转移与肿瘤微环境关系的研究进展[J]. 中华实验外科杂志, 2011, 28(11): 2018-2019.
[1] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[2] 谢丽春, 欧庆芬, 张秋萍, 叶升. 简化和标准肝脏MRI方案在结直肠癌肝转移患者随访中的临床应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 434-437.
[3] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[4] 艾贵生, 杨健, 蒋文涛. 肝移植治疗不可切除结直肠癌肝转移的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 174-180.
[5] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[6] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[7] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[8] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[9] 宋华传, 季鹏, 姚焕章, 王永帅, 张珅瑜, 宋瑞鹏, 王继洲. 腹腔镜肝切除术联合微波消融治疗多发性结直肠癌肝转移[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 222-226.
[10] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[11] 张朋伟, 杨朝凤, 李杨. 结直肠癌肝转移介入治疗的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 177-182.
[12] 蒲丹, 龙煊, 周玉龙, 李甘霖. 血清外泌体miR-224对结直肠癌肝转移患者射频消融治疗后复发的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 45-52.
[13] 尤亚茹, 刘译阳, 李莉明, 赵帅, 袁梦晨, 黄清博, 高剑波. 多层螺旋CT增强扫描对伴有肝转移的胃肝样腺癌的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 21-27.
[14] 陆天, 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 133-137.
[15] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?