切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 136 -140. doi: 10.3877/cma.j.issn.1674-0785.2019.02.011

所属专题: 文献

综述

间充质干细胞向软骨细胞表型分化的研究进展
张芝良1, 李鹏翠1, 卫小春1,()   
  1. 1. 030001 太原,山西医科大学第二医院骨科
  • 收稿日期:2018-10-31 出版日期:2019-01-15
  • 通信作者: 卫小春
  • 基金资助:
    国家自然科学基金青年基金(81601949); 山西省回国留学人员科研资助项目(2016-118)

Progress in research of differentiation of mesenchymal stem cells into chondrocytes

Zhiliang Zhang1, Pengcui Li1, Xiaochun Wei1,()   

  1. 1. Department of Orthopedics, the Second Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China
  • Received:2018-10-31 Published:2019-01-15
  • Corresponding author: Xiaochun Wei
  • About author:
    Corresponding author: Wei Xiaochun, Email:
引用本文:

张芝良, 李鹏翠, 卫小春. 间充质干细胞向软骨细胞表型分化的研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(02): 136-140.

Zhiliang Zhang, Pengcui Li, Xiaochun Wei. Progress in research of differentiation of mesenchymal stem cells into chondrocytes[J]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(02): 136-140.

软骨细胞是关节软骨中唯一的细胞,负责维持细胞外基质的稳态与平衡,软骨细胞数量的丢失和功能的失衡在骨关节炎的发病中起关键作用。但是由于关节软骨几乎没有再生能力,目前临床上用来治疗关节软骨缺损的方法和药物难以获得满意的疗效。软骨组织工程致力于通过人工手段在体内外生成透明软骨,为关节软骨缺损的修复提供了一条新的方法。间充质干细胞作为软骨组织工程的种子细胞可在特定诱导条件下分化为软骨细胞。因此,阐明该过程中软骨形成的相关转录因子和具体机制对于未来软骨再生医学的成功至关重要。

Chondrocytes are the only cells in articular cartilage, responsible for maintaining the homeostasis and balance of the extracellular matrix. The loss of chondrocyte number and functional imbalance play a key role in the pathogenesis of osteoarthritis. However, because the articular cartilage has almost no regenerative capacity, it is difficult to obtain satisfactory results using the methods and drugs currently used to treat articular cartilage defects. Cartilage tissue engineering aims to generate hyaline cartilage in vitro and in vivo by artificial means, providing a new method for the repair of articular cartilage defects. Mesenchymal stem cells, as seed cells of cartilage tissue engineering, can differentiate into chondrocytes under specific induction conditions. Therefore, elucidating the relevant factors and specific mechanisms of cartilage formation in this process is critical to the success of future cartilage regenerative medicine. This article is intended to provide an overview of this topic.

1
Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers [J]. Cell Tissue Kinet, 1987, 20(3): 263-272.
2
Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow [J]. Tissue Eng, 1998, 4(4): 415-428.
3
卫旭东, 党源, 胡德庆. 间充质干细胞在软骨损伤修复中的研究进展 [J/CD]. 中华细胞与干细胞杂志(电子版), 2017, 7(3): 178-184.
4
Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees [J]. Osteoarthritis Cartilage, 2002, 10(3): 199-206.
5
Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics [J]. Circ Res, 2004, 95(1): 9-20.
6
Scotti C, Piccinini E, Takizawa H, et al. Engineering of a functional bone organ through endochondral ossification [J]. Proc Natl Acad Sci U S A, 2013, 110(10): 3997-4002.
7
Zhao L, Hantash BM. Tgf-beta1 regulates differentiation of bone marrow mesenchymal stem cells [J]. Vitam Horm, 2011, 87: 127-141.
8
Rosen DM, Stempien SA, Thompson AY, et al. Differentiation of rat mesenchymal cells by cartilage-inducing factor. Enhanced phenotypic expression by dihydrocytochalasin b [J]. Exp Cell Res, 1986, 165(1): 127-138.
9
Seyedin SM, Thompson AY, Bentz H, et al. Cartilage-inducing factor-a. Apparent identity to transforming growth factor-beta [J]. Journal of Biological Chemistry, 1986, 261(13): 5693.
10
Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells [J]. Experimental Cell Research, 1998, 238(1): 265-272.
11
Bosnakovski D, Mizuno M, Kim G, et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (mscs) in different hydrogels: Influence of collagen type ii extracellular matrix on msc chondrogenesis [J]. Biotechnol Bioeng, 2006, 93(6): 1152-1163.
12
Park H, Temenoff JS, Tabata Y, et al. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering [J]. Biomaterials, 2007, 28(21): 3217-3227.
13
Xia W, Jin YQ, Kretlow JD, et al. Adenoviral transduction of htgf-β1 enhances the chondrogenesis of bone marrow derived stromal cells [J]. Biotechnology Letters, 2009, 31(5): 639-646.
14
Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through smads [J]. Annu Rev Cell Dev Biol, 2005, 21(1): 659-693.
15
Tuli R, Tuli S, Nandi S, et al. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves n-cadherin and mitogen-activated protein kinase and wnt signaling cross-talk [J]. J Biol Chem, 2003, 278(42): 41227-41236.
16
Sarem M, Heizmann M, Barbero A, et al. Hyperstimulation of casr in human mscs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of pth1r [J]. Proc Natl Acad Sci U S A, 2018.
17
Arikawa T, Matsukawa A, Watanabe K, et al. Galectin-9 accelerates transforming growth factor beta3-induced differentiation of human mesenchymal stem cells to chondrocytes [J]. Bone, 2009, 44(5): 849-857.
18
Vater C, Kasten P, Stiehler M. Culture media for the differentiation of mesenchymal stromal cells [J]. Acta Biomaterialia, 2011, 7(2): 463-477.
19
Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an sry-related gene [J]. Nature, 1994, 372(6506): 525-530.
20
Akiyama H, Chaboissier MC, Martin JF, et al. The transcription factor sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of sox5 and sox6 [J]. Genes Dev, 2002, 16(21): 2813-2828.
21
He Y, Zhu W, Shin MH, et al. Cfos-sox9 axis reprograms bone marrow-derived mesenchymal stem cells into chondroblastic osteosarcoma [J]. Stem Cell Reports, 2017, 8(6): 1630-1644.
22
Venkatesan J, Moutos F, Rey-Rico A, et al. Chondrogenic differentiation processes in human bone-marrow aspirates seeded in three-dimensional-woven poly(ɛ-caprolactone) scaffolds enhanced by recombinant adeno-associated virus-mediated sox9 gene transfer [J]. Hum Gene Ther, 2018, 29(11): 1277-1286.
23
Liao J, Hu N, Zhou N, et al. Sox9 potentiates bmp2-induced chondrogenic differentiation and inhibits bmp2-induced osteogenic differentiation [J]. PLoS One, 2014, 9(2): e89025.
24
Wang Z, Li X, He X, et al. Delivery of the sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model [J]. Braz J Med Biol Res, 2014, 47(4): 279-286.
25
黄爱兵, 邱勇, 钱邦平. Sox9家族在软骨细胞生命周期的调控作用 [J]. 中华骨与关节外科杂志, 2008, 1(4): 329-333.
26
Park J, Yang H, Woo D, et al. Chondrogenesis of human mesenchymal stem cells mediated by the combination of sox trio sox5, 6, and 9 genes complexed with pei-modified plga nanoparticles [J]. Biomaterials, 2011, 32(14): 3679-3688.
27
Takigawa Y, Hata K, Muramatsu S, et al. The transcription factor znf219 regulates chondrocyte differentiation by assembling a transcription factory with sox9 [J]. J Cell Sci, 2010, 123(Pt 21): 3780-3788.
28
Hino K, Saito A, Kido M, et al. Master regulator for chondrogenesis, sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer bbf2h7/creb3l2 in chondrocytes [J]. J Biol Chem, 2014, 289(20): 13810-13820.
29
Yamashita S, Miyaki S, Kato Y, et al. L-sox5 and sox6 proteins enhance chondrogenic mir-140 microrna expression by strengthening dimeric sox9 activity [J]. J Biol Chem, 2012, 287(26): 22206-22215.
30
Cooke ME, Allon AA, Cheng T, et al. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy [J]. Osteoarthritis Cartilage, 2011, 19(10): 1210-1218.
31
Lettry V, Hosoya K, Takagi S, et al. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells [J]. Jpn J Vet Res, 2010, 58(1): 5-15.
32
Meretoja V, Dahlin R, Wright S, et al. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds [J]. Biomaterials, 2013, 34(17): 4266-4273.
33
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage [J]. Matrix Biol, 2014, 39: 25-32.
34
Heng BC, Cao T, Haider HK, et al. An overview and synopsis of techniques for directing stem cell differentiation in vitro [J]. Cell Tissue Res, 2004, 315(3): 291-303.
35
Haas AR, Tuan RS. Chondrogenic differentiation of murine c3h10t1/2 multipotential mesenchymal cells: Ii. Stimulation by bone morphogenetic protein-2 requires modulation of n-cadherin expression and function [J]. Differentiation, 2010, 64(2): 77-89.
36
Loeser RF. Integrins and cell signaling in chondrocytes [J]. Biorheology, 2002, 39(1-2): 119-124.
37
Ikeda Y, Sakaue M, Chijimatsu R, et al. Igf-1 gene transfer to human synovial mscs promotes their chondrogenic differentiation potential without induction of the hypertrophic phenotype [J]. Stem Cells Int, 2017, 2017: 5804147.
38
Longobardi L, O′Rear L, Aakula S, et al. Effect of igf-i in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of tgf-beta signaling [J]. J Bone Miner Res, 2006, 21(4): 626-636.
39
Shakibaei M, John T, De Souza P, et al. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: Collaboration with the insulin-like growth factor-i receptor [J]. Biochem J, 1999, 342 Pt 3: 615-623.
40
Shakibaei M, Seifarth C, John T, et al. Igf-i extends the chondrogenic potential of human articular chondrocytes in vitro: Molecular association between sox9 and erk1/2 [J]. Biochem Pharmacol, 2006, 72(11): 1382-1395.
41
An C, Cheng Y, Yuan Q, et al. Igf-1 and bmp-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells [J]. Annals of Biomedical Engineering, 2010, 38(4): 1647-1654.
42
Jr SM. Bmp-1 and the astacin family of metalloproteinases: A potential link between the extracellular matrix, growth factors and pattern formation [J]. Bioessays, 1996, 18(6): 439-442.
43
Brady K, Dickinson SC, Guillot PV, et al. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis [J]. Stem Cells Dev, 2014, 23(5): 541-554.
44
Indrawattana N, Chen G, Tadokoro M, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell [J]. Biochem Biophys Res Commun, 2004, 320(3): 914-919.
45
Deschaseaux F, Sensébé L, Heymann D. Mechanisms of bone repair and regeneration [J]. Trends in Molecular Medicine, 2009, 15(9): 417-429.
46
Sekiya I, Vuoristo JT, Larson BL, et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis [J]. Proc Nat Acad Sci U S A, 2002, 99(7): 4397-4402.
47
Mulloy B, Rider CC. The bone morphogenetic proteins and their antagonists [J]. Vitam Horm, 2015, 99: 63-90.
48
Omidvar N, Ganji F, Eslaminejad M. In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by pcl fibrous scaffolds containing dexamethazone-loaded chitosan microspheres [J]. J Biomed Mater Res A, 2016, 104(7): 1657-1667.
49
Mwale F, Stachura D, Roughley P, et al. Limitations of using aggrecan and type x collagen as markers of chondrogenesis in mesenchymal stem cell differentiation [J]. Journal of Orthopaedic Research, 2006, 24(8): 1791-1798.
50
Ham O, Song B, Lee S, et al. The role of microrna-23b in the differentiation of msc into chondrocyte by targeting protein kinase a signaling [J]. Biomaterials, 2012, 33(18): 4500-4507.
51
Kondo M, Yamaoka K, Sakata K, et al. Contribution of the interleukin-6/stat-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells [J]. Arthritis Rheumatol, 2015, 67(5): 1250-1260.
52
Chaly Y, Blair H, Smith S, et al. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells [J]. Ann Rheum Dis, 2015, 74(7): 1467-1473.
53
Gao W, Lin M, Liang A, et al. Melatonin enhances chondrogenic differentiation of human mesenchymal stem cells [J]. J Pineal Res, 2014, 56(1): 62-70.
54
Johnson K, Zhu S, Tremblay M, et al. A stem cell-based approach to cartilage repair [J]. Science, 2012, 336(6082): 717-721.
55
Wei CC, Lin AB, Hung SC. Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: Bench, bedside, and industry [J]. Cell Transplant, 2014, 23(4-5): 505-512.
56
Koh YG, Choi YJ, Kwon OR, et al. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees [J]. Am J Sports Med, 2014, 42(7): 1628-1637.
57
Dawson JI, Kanczler J, Tare R, et al. Concise review: Bridging the gap: Bone regeneration using skeletal stem cell-based strategies—where are we now? [J]. Stem Cells, 2014, 32(1): 35-44.
[1] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[2] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[3] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[4] 郑泽坤, 刘卓恒, 邹浩, 胡会元, 李妲, 吴巍. 扩大根治性手术切除复发性巨大腹膜后去分化脂肪肉瘤1例[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 588-590.
[5] 张蓉, 秦洪真, 杨晓冬, 刘爽, 刘明锋, 曹秀堂. 分化型甲状腺癌术后康复锻炼的临床应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 439-442.
[6] 刘阳阳, 王梁, 戴志红, 郝建戈, 张力仁, 刘志宇. 腹膜后去分化脂肪肉瘤合并左肾透明细胞癌一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 412-414.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要