切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 136 -140. doi: 10.3877/cma.j.issn.1674-0785.2019.02.011

所属专题: 文献

综述

间充质干细胞向软骨细胞表型分化的研究进展
张芝良1, 李鹏翠1, 卫小春1,()   
  1. 1. 030001 太原,山西医科大学第二医院骨科
  • 收稿日期:2018-10-31 出版日期:2019-01-15
  • 通信作者: 卫小春
  • 基金资助:
    国家自然科学基金青年基金(81601949); 山西省回国留学人员科研资助项目(2016-118)

Progress in research of differentiation of mesenchymal stem cells into chondrocytes

Zhiliang Zhang1, Pengcui Li1, Xiaochun Wei1,()   

  1. 1. Department of Orthopedics, the Second Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China
  • Received:2018-10-31 Published:2019-01-15
  • Corresponding author: Xiaochun Wei
  • About author:
    Corresponding author: Wei Xiaochun, Email:
引用本文:

张芝良, 李鹏翠, 卫小春. 间充质干细胞向软骨细胞表型分化的研究进展[J/OL]. 中华临床医师杂志(电子版), 2019, 13(02): 136-140.

Zhiliang Zhang, Pengcui Li, Xiaochun Wei. Progress in research of differentiation of mesenchymal stem cells into chondrocytes[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(02): 136-140.

软骨细胞是关节软骨中唯一的细胞,负责维持细胞外基质的稳态与平衡,软骨细胞数量的丢失和功能的失衡在骨关节炎的发病中起关键作用。但是由于关节软骨几乎没有再生能力,目前临床上用来治疗关节软骨缺损的方法和药物难以获得满意的疗效。软骨组织工程致力于通过人工手段在体内外生成透明软骨,为关节软骨缺损的修复提供了一条新的方法。间充质干细胞作为软骨组织工程的种子细胞可在特定诱导条件下分化为软骨细胞。因此,阐明该过程中软骨形成的相关转录因子和具体机制对于未来软骨再生医学的成功至关重要。

Chondrocytes are the only cells in articular cartilage, responsible for maintaining the homeostasis and balance of the extracellular matrix. The loss of chondrocyte number and functional imbalance play a key role in the pathogenesis of osteoarthritis. However, because the articular cartilage has almost no regenerative capacity, it is difficult to obtain satisfactory results using the methods and drugs currently used to treat articular cartilage defects. Cartilage tissue engineering aims to generate hyaline cartilage in vitro and in vivo by artificial means, providing a new method for the repair of articular cartilage defects. Mesenchymal stem cells, as seed cells of cartilage tissue engineering, can differentiate into chondrocytes under specific induction conditions. Therefore, elucidating the relevant factors and specific mechanisms of cartilage formation in this process is critical to the success of future cartilage regenerative medicine. This article is intended to provide an overview of this topic.

1
Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers [J]. Cell Tissue Kinet, 1987, 20(3): 263-272.
2
Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow [J]. Tissue Eng, 1998, 4(4): 415-428.
3
卫旭东, 党源, 胡德庆. 间充质干细胞在软骨损伤修复中的研究进展 [J/CD]. 中华细胞与干细胞杂志(电子版), 2017, 7(3): 178-184.
4
Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees [J]. Osteoarthritis Cartilage, 2002, 10(3): 199-206.
5
Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics [J]. Circ Res, 2004, 95(1): 9-20.
6
Scotti C, Piccinini E, Takizawa H, et al. Engineering of a functional bone organ through endochondral ossification [J]. Proc Natl Acad Sci U S A, 2013, 110(10): 3997-4002.
7
Zhao L, Hantash BM. Tgf-beta1 regulates differentiation of bone marrow mesenchymal stem cells [J]. Vitam Horm, 2011, 87: 127-141.
8
Rosen DM, Stempien SA, Thompson AY, et al. Differentiation of rat mesenchymal cells by cartilage-inducing factor. Enhanced phenotypic expression by dihydrocytochalasin b [J]. Exp Cell Res, 1986, 165(1): 127-138.
9
Seyedin SM, Thompson AY, Bentz H, et al. Cartilage-inducing factor-a. Apparent identity to transforming growth factor-beta [J]. Journal of Biological Chemistry, 1986, 261(13): 5693.
10
Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells [J]. Experimental Cell Research, 1998, 238(1): 265-272.
11
Bosnakovski D, Mizuno M, Kim G, et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (mscs) in different hydrogels: Influence of collagen type ii extracellular matrix on msc chondrogenesis [J]. Biotechnol Bioeng, 2006, 93(6): 1152-1163.
12
Park H, Temenoff JS, Tabata Y, et al. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering [J]. Biomaterials, 2007, 28(21): 3217-3227.
13
Xia W, Jin YQ, Kretlow JD, et al. Adenoviral transduction of htgf-β1 enhances the chondrogenesis of bone marrow derived stromal cells [J]. Biotechnology Letters, 2009, 31(5): 639-646.
14
Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through smads [J]. Annu Rev Cell Dev Biol, 2005, 21(1): 659-693.
15
Tuli R, Tuli S, Nandi S, et al. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves n-cadherin and mitogen-activated protein kinase and wnt signaling cross-talk [J]. J Biol Chem, 2003, 278(42): 41227-41236.
16
Sarem M, Heizmann M, Barbero A, et al. Hyperstimulation of casr in human mscs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of pth1r [J]. Proc Natl Acad Sci U S A, 2018.
17
Arikawa T, Matsukawa A, Watanabe K, et al. Galectin-9 accelerates transforming growth factor beta3-induced differentiation of human mesenchymal stem cells to chondrocytes [J]. Bone, 2009, 44(5): 849-857.
18
Vater C, Kasten P, Stiehler M. Culture media for the differentiation of mesenchymal stromal cells [J]. Acta Biomaterialia, 2011, 7(2): 463-477.
19
Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an sry-related gene [J]. Nature, 1994, 372(6506): 525-530.
20
Akiyama H, Chaboissier MC, Martin JF, et al. The transcription factor sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of sox5 and sox6 [J]. Genes Dev, 2002, 16(21): 2813-2828.
21
He Y, Zhu W, Shin MH, et al. Cfos-sox9 axis reprograms bone marrow-derived mesenchymal stem cells into chondroblastic osteosarcoma [J]. Stem Cell Reports, 2017, 8(6): 1630-1644.
22
Venkatesan J, Moutos F, Rey-Rico A, et al. Chondrogenic differentiation processes in human bone-marrow aspirates seeded in three-dimensional-woven poly(ɛ-caprolactone) scaffolds enhanced by recombinant adeno-associated virus-mediated sox9 gene transfer [J]. Hum Gene Ther, 2018, 29(11): 1277-1286.
23
Liao J, Hu N, Zhou N, et al. Sox9 potentiates bmp2-induced chondrogenic differentiation and inhibits bmp2-induced osteogenic differentiation [J]. PLoS One, 2014, 9(2): e89025.
24
Wang Z, Li X, He X, et al. Delivery of the sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model [J]. Braz J Med Biol Res, 2014, 47(4): 279-286.
25
黄爱兵, 邱勇, 钱邦平. Sox9家族在软骨细胞生命周期的调控作用 [J]. 中华骨与关节外科杂志, 2008, 1(4): 329-333.
26
Park J, Yang H, Woo D, et al. Chondrogenesis of human mesenchymal stem cells mediated by the combination of sox trio sox5, 6, and 9 genes complexed with pei-modified plga nanoparticles [J]. Biomaterials, 2011, 32(14): 3679-3688.
27
Takigawa Y, Hata K, Muramatsu S, et al. The transcription factor znf219 regulates chondrocyte differentiation by assembling a transcription factory with sox9 [J]. J Cell Sci, 2010, 123(Pt 21): 3780-3788.
28
Hino K, Saito A, Kido M, et al. Master regulator for chondrogenesis, sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer bbf2h7/creb3l2 in chondrocytes [J]. J Biol Chem, 2014, 289(20): 13810-13820.
29
Yamashita S, Miyaki S, Kato Y, et al. L-sox5 and sox6 proteins enhance chondrogenic mir-140 microrna expression by strengthening dimeric sox9 activity [J]. J Biol Chem, 2012, 287(26): 22206-22215.
30
Cooke ME, Allon AA, Cheng T, et al. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy [J]. Osteoarthritis Cartilage, 2011, 19(10): 1210-1218.
31
Lettry V, Hosoya K, Takagi S, et al. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells [J]. Jpn J Vet Res, 2010, 58(1): 5-15.
32
Meretoja V, Dahlin R, Wright S, et al. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds [J]. Biomaterials, 2013, 34(17): 4266-4273.
33
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage [J]. Matrix Biol, 2014, 39: 25-32.
34
Heng BC, Cao T, Haider HK, et al. An overview and synopsis of techniques for directing stem cell differentiation in vitro [J]. Cell Tissue Res, 2004, 315(3): 291-303.
35
Haas AR, Tuan RS. Chondrogenic differentiation of murine c3h10t1/2 multipotential mesenchymal cells: Ii. Stimulation by bone morphogenetic protein-2 requires modulation of n-cadherin expression and function [J]. Differentiation, 2010, 64(2): 77-89.
36
Loeser RF. Integrins and cell signaling in chondrocytes [J]. Biorheology, 2002, 39(1-2): 119-124.
37
Ikeda Y, Sakaue M, Chijimatsu R, et al. Igf-1 gene transfer to human synovial mscs promotes their chondrogenic differentiation potential without induction of the hypertrophic phenotype [J]. Stem Cells Int, 2017, 2017: 5804147.
38
Longobardi L, O′Rear L, Aakula S, et al. Effect of igf-i in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of tgf-beta signaling [J]. J Bone Miner Res, 2006, 21(4): 626-636.
39
Shakibaei M, John T, De Souza P, et al. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: Collaboration with the insulin-like growth factor-i receptor [J]. Biochem J, 1999, 342 Pt 3: 615-623.
40
Shakibaei M, Seifarth C, John T, et al. Igf-i extends the chondrogenic potential of human articular chondrocytes in vitro: Molecular association between sox9 and erk1/2 [J]. Biochem Pharmacol, 2006, 72(11): 1382-1395.
41
An C, Cheng Y, Yuan Q, et al. Igf-1 and bmp-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells [J]. Annals of Biomedical Engineering, 2010, 38(4): 1647-1654.
42
Jr SM. Bmp-1 and the astacin family of metalloproteinases: A potential link between the extracellular matrix, growth factors and pattern formation [J]. Bioessays, 1996, 18(6): 439-442.
43
Brady K, Dickinson SC, Guillot PV, et al. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis [J]. Stem Cells Dev, 2014, 23(5): 541-554.
44
Indrawattana N, Chen G, Tadokoro M, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell [J]. Biochem Biophys Res Commun, 2004, 320(3): 914-919.
45
Deschaseaux F, Sensébé L, Heymann D. Mechanisms of bone repair and regeneration [J]. Trends in Molecular Medicine, 2009, 15(9): 417-429.
46
Sekiya I, Vuoristo JT, Larson BL, et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis [J]. Proc Nat Acad Sci U S A, 2002, 99(7): 4397-4402.
47
Mulloy B, Rider CC. The bone morphogenetic proteins and their antagonists [J]. Vitam Horm, 2015, 99: 63-90.
48
Omidvar N, Ganji F, Eslaminejad M. In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by pcl fibrous scaffolds containing dexamethazone-loaded chitosan microspheres [J]. J Biomed Mater Res A, 2016, 104(7): 1657-1667.
49
Mwale F, Stachura D, Roughley P, et al. Limitations of using aggrecan and type x collagen as markers of chondrogenesis in mesenchymal stem cell differentiation [J]. Journal of Orthopaedic Research, 2006, 24(8): 1791-1798.
50
Ham O, Song B, Lee S, et al. The role of microrna-23b in the differentiation of msc into chondrocyte by targeting protein kinase a signaling [J]. Biomaterials, 2012, 33(18): 4500-4507.
51
Kondo M, Yamaoka K, Sakata K, et al. Contribution of the interleukin-6/stat-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells [J]. Arthritis Rheumatol, 2015, 67(5): 1250-1260.
52
Chaly Y, Blair H, Smith S, et al. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells [J]. Ann Rheum Dis, 2015, 74(7): 1467-1473.
53
Gao W, Lin M, Liang A, et al. Melatonin enhances chondrogenic differentiation of human mesenchymal stem cells [J]. J Pineal Res, 2014, 56(1): 62-70.
54
Johnson K, Zhu S, Tremblay M, et al. A stem cell-based approach to cartilage repair [J]. Science, 2012, 336(6082): 717-721.
55
Wei CC, Lin AB, Hung SC. Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: Bench, bedside, and industry [J]. Cell Transplant, 2014, 23(4-5): 505-512.
56
Koh YG, Choi YJ, Kwon OR, et al. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees [J]. Am J Sports Med, 2014, 42(7): 1628-1637.
57
Dawson JI, Kanczler J, Tare R, et al. Concise review: Bridging the gap: Bone regeneration using skeletal stem cell-based strategies—where are we now? [J]. Stem Cells, 2014, 32(1): 35-44.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[3] 司钦亮, 毕世龙, 焦慧骁, 李世照, 陈哲禹, 武玉东. 精索去分化脂肪肉瘤两例并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 585-590.
[4] 杨攀, 黄晓寒, 邓才霞, 周利航, 周向东, 罗虎. SMARCA4缺失的胸部未分化肿瘤临床特征及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 529-534.
[5] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[6] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[9] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[10] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[11] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[12] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[13] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
[14] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[15] 杨菲, 刘腾飞, 赵志军, 李睿聪, 张颉, 刘妍, 赵珍. 血清维生素水平与分化型甲状腺癌的关联性研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 633-640.
阅读次数
全文


摘要