1 |
Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers [J]. Cell Tissue Kinet, 1987, 20(3): 263-272.
|
2 |
Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow [J]. Tissue Eng, 1998, 4(4): 415-428.
|
3 |
卫旭东, 党源, 胡德庆. 间充质干细胞在软骨损伤修复中的研究进展 [J/CD]. 中华细胞与干细胞杂志(电子版), 2017, 7(3): 178-184.
|
4 |
Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees [J]. Osteoarthritis Cartilage, 2002, 10(3): 199-206.
|
5 |
Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics [J]. Circ Res, 2004, 95(1): 9-20.
|
6 |
Scotti C, Piccinini E, Takizawa H, et al. Engineering of a functional bone organ through endochondral ossification [J]. Proc Natl Acad Sci U S A, 2013, 110(10): 3997-4002.
|
7 |
Zhao L, Hantash BM. Tgf-beta1 regulates differentiation of bone marrow mesenchymal stem cells [J]. Vitam Horm, 2011, 87: 127-141.
|
8 |
Rosen DM, Stempien SA, Thompson AY, et al. Differentiation of rat mesenchymal cells by cartilage-inducing factor. Enhanced phenotypic expression by dihydrocytochalasin b [J]. Exp Cell Res, 1986, 165(1): 127-138.
|
9 |
Seyedin SM, Thompson AY, Bentz H, et al. Cartilage-inducing factor-a. Apparent identity to transforming growth factor-beta [J]. Journal of Biological Chemistry, 1986, 261(13): 5693.
|
10 |
Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells [J]. Experimental Cell Research, 1998, 238(1): 265-272.
|
11 |
Bosnakovski D, Mizuno M, Kim G, et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (mscs) in different hydrogels: Influence of collagen type ii extracellular matrix on msc chondrogenesis [J]. Biotechnol Bioeng, 2006, 93(6): 1152-1163.
|
12 |
Park H, Temenoff JS, Tabata Y, et al. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering [J]. Biomaterials, 2007, 28(21): 3217-3227.
|
13 |
Xia W, Jin YQ, Kretlow JD, et al. Adenoviral transduction of htgf-β1 enhances the chondrogenesis of bone marrow derived stromal cells [J]. Biotechnology Letters, 2009, 31(5): 639-646.
|
14 |
Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through smads [J]. Annu Rev Cell Dev Biol, 2005, 21(1): 659-693.
|
15 |
Tuli R, Tuli S, Nandi S, et al. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves n-cadherin and mitogen-activated protein kinase and wnt signaling cross-talk [J]. J Biol Chem, 2003, 278(42): 41227-41236.
|
16 |
Sarem M, Heizmann M, Barbero A, et al. Hyperstimulation of casr in human mscs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of pth1r [J]. Proc Natl Acad Sci U S A, 2018.
|
17 |
Arikawa T, Matsukawa A, Watanabe K, et al. Galectin-9 accelerates transforming growth factor beta3-induced differentiation of human mesenchymal stem cells to chondrocytes [J]. Bone, 2009, 44(5): 849-857.
|
18 |
Vater C, Kasten P, Stiehler M. Culture media for the differentiation of mesenchymal stromal cells [J]. Acta Biomaterialia, 2011, 7(2): 463-477.
|
19 |
Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an sry-related gene [J]. Nature, 1994, 372(6506): 525-530.
|
20 |
Akiyama H, Chaboissier MC, Martin JF, et al. The transcription factor sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of sox5 and sox6 [J]. Genes Dev, 2002, 16(21): 2813-2828.
|
21 |
He Y, Zhu W, Shin MH, et al. Cfos-sox9 axis reprograms bone marrow-derived mesenchymal stem cells into chondroblastic osteosarcoma [J]. Stem Cell Reports, 2017, 8(6): 1630-1644.
|
22 |
Venkatesan J, Moutos F, Rey-Rico A, et al. Chondrogenic differentiation processes in human bone-marrow aspirates seeded in three-dimensional-woven poly(ɛ-caprolactone) scaffolds enhanced by recombinant adeno-associated virus-mediated sox9 gene transfer [J]. Hum Gene Ther, 2018, 29(11): 1277-1286.
|
23 |
Liao J, Hu N, Zhou N, et al. Sox9 potentiates bmp2-induced chondrogenic differentiation and inhibits bmp2-induced osteogenic differentiation [J]. PLoS One, 2014, 9(2): e89025.
|
24 |
Wang Z, Li X, He X, et al. Delivery of the sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model [J]. Braz J Med Biol Res, 2014, 47(4): 279-286.
|
25 |
黄爱兵, 邱勇, 钱邦平. Sox9家族在软骨细胞生命周期的调控作用 [J]. 中华骨与关节外科杂志, 2008, 1(4): 329-333.
|
26 |
Park J, Yang H, Woo D, et al. Chondrogenesis of human mesenchymal stem cells mediated by the combination of sox trio sox5, 6, and 9 genes complexed with pei-modified plga nanoparticles [J]. Biomaterials, 2011, 32(14): 3679-3688.
|
27 |
Takigawa Y, Hata K, Muramatsu S, et al. The transcription factor znf219 regulates chondrocyte differentiation by assembling a transcription factory with sox9 [J]. J Cell Sci, 2010, 123(Pt 21): 3780-3788.
|
28 |
Hino K, Saito A, Kido M, et al. Master regulator for chondrogenesis, sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer bbf2h7/creb3l2 in chondrocytes [J]. J Biol Chem, 2014, 289(20): 13810-13820.
|
29 |
Yamashita S, Miyaki S, Kato Y, et al. L-sox5 and sox6 proteins enhance chondrogenic mir-140 microrna expression by strengthening dimeric sox9 activity [J]. J Biol Chem, 2012, 287(26): 22206-22215.
|
30 |
Cooke ME, Allon AA, Cheng T, et al. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy [J]. Osteoarthritis Cartilage, 2011, 19(10): 1210-1218.
|
31 |
Lettry V, Hosoya K, Takagi S, et al. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells [J]. Jpn J Vet Res, 2010, 58(1): 5-15.
|
32 |
Meretoja V, Dahlin R, Wright S, et al. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds [J]. Biomaterials, 2013, 34(17): 4266-4273.
|
33 |
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage [J]. Matrix Biol, 2014, 39: 25-32.
|
34 |
Heng BC, Cao T, Haider HK, et al. An overview and synopsis of techniques for directing stem cell differentiation in vitro [J]. Cell Tissue Res, 2004, 315(3): 291-303.
|
35 |
Haas AR, Tuan RS. Chondrogenic differentiation of murine c3h10t1/2 multipotential mesenchymal cells: Ii. Stimulation by bone morphogenetic protein-2 requires modulation of n-cadherin expression and function [J]. Differentiation, 2010, 64(2): 77-89.
|
36 |
Loeser RF. Integrins and cell signaling in chondrocytes [J]. Biorheology, 2002, 39(1-2): 119-124.
|
37 |
Ikeda Y, Sakaue M, Chijimatsu R, et al. Igf-1 gene transfer to human synovial mscs promotes their chondrogenic differentiation potential without induction of the hypertrophic phenotype [J]. Stem Cells Int, 2017, 2017: 5804147.
|
38 |
Longobardi L, O′Rear L, Aakula S, et al. Effect of igf-i in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of tgf-beta signaling [J]. J Bone Miner Res, 2006, 21(4): 626-636.
|
39 |
Shakibaei M, John T, De Souza P, et al. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: Collaboration with the insulin-like growth factor-i receptor [J]. Biochem J, 1999, 342 Pt 3: 615-623.
|
40 |
Shakibaei M, Seifarth C, John T, et al. Igf-i extends the chondrogenic potential of human articular chondrocytes in vitro: Molecular association between sox9 and erk1/2 [J]. Biochem Pharmacol, 2006, 72(11): 1382-1395.
|
41 |
An C, Cheng Y, Yuan Q, et al. Igf-1 and bmp-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells [J]. Annals of Biomedical Engineering, 2010, 38(4): 1647-1654.
|
42 |
Jr SM. Bmp-1 and the astacin family of metalloproteinases: A potential link between the extracellular matrix, growth factors and pattern formation [J]. Bioessays, 1996, 18(6): 439-442.
|
43 |
Brady K, Dickinson SC, Guillot PV, et al. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis [J]. Stem Cells Dev, 2014, 23(5): 541-554.
|
44 |
Indrawattana N, Chen G, Tadokoro M, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell [J]. Biochem Biophys Res Commun, 2004, 320(3): 914-919.
|
45 |
Deschaseaux F, Sensébé L, Heymann D. Mechanisms of bone repair and regeneration [J]. Trends in Molecular Medicine, 2009, 15(9): 417-429.
|
46 |
Sekiya I, Vuoristo JT, Larson BL, et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis [J]. Proc Nat Acad Sci U S A, 2002, 99(7): 4397-4402.
|
47 |
Mulloy B, Rider CC. The bone morphogenetic proteins and their antagonists [J]. Vitam Horm, 2015, 99: 63-90.
|
48 |
Omidvar N, Ganji F, Eslaminejad M. In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by pcl fibrous scaffolds containing dexamethazone-loaded chitosan microspheres [J]. J Biomed Mater Res A, 2016, 104(7): 1657-1667.
|
49 |
Mwale F, Stachura D, Roughley P, et al. Limitations of using aggrecan and type x collagen as markers of chondrogenesis in mesenchymal stem cell differentiation [J]. Journal of Orthopaedic Research, 2006, 24(8): 1791-1798.
|
50 |
Ham O, Song B, Lee S, et al. The role of microrna-23b in the differentiation of msc into chondrocyte by targeting protein kinase a signaling [J]. Biomaterials, 2012, 33(18): 4500-4507.
|
51 |
Kondo M, Yamaoka K, Sakata K, et al. Contribution of the interleukin-6/stat-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells [J]. Arthritis Rheumatol, 2015, 67(5): 1250-1260.
|
52 |
Chaly Y, Blair H, Smith S, et al. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells [J]. Ann Rheum Dis, 2015, 74(7): 1467-1473.
|
53 |
Gao W, Lin M, Liang A, et al. Melatonin enhances chondrogenic differentiation of human mesenchymal stem cells [J]. J Pineal Res, 2014, 56(1): 62-70.
|
54 |
Johnson K, Zhu S, Tremblay M, et al. A stem cell-based approach to cartilage repair [J]. Science, 2012, 336(6082): 717-721.
|
55 |
Wei CC, Lin AB, Hung SC. Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: Bench, bedside, and industry [J]. Cell Transplant, 2014, 23(4-5): 505-512.
|
56 |
Koh YG, Choi YJ, Kwon OR, et al. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees [J]. Am J Sports Med, 2014, 42(7): 1628-1637.
|
57 |
Dawson JI, Kanczler J, Tare R, et al. Concise review: Bridging the gap: Bone regeneration using skeletal stem cell-based strategies—where are we now? [J]. Stem Cells, 2014, 32(1): 35-44.
|