切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 141 -146. doi: 10.3877/cma.j.issn.1674-0785.2019.02.012

所属专题: 文献

综述

肺动脉高压动物模型与分子机制的研究进展
沈慧1, 张振刚1, 龚开政1,()   
  1. 1. 225012 江苏扬州,扬州大学附属医院心血管内科
  • 收稿日期:2017-11-28 出版日期:2019-01-15
  • 通信作者: 龚开政
  • 基金资助:
    国家自然科学基金资助项目(81470381); 江苏省六大人才高峰资助项目(2014-WSN-077); 扬州大学研究生国际学术交流专项基金项目(2018年度)

Pulmonary hypertension: animal modeling and molecular mechanism

Hui Shen1, Zhengang Zhang1, Kaizheng Gong1,()   

  1. 1. Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou 225012, Jiangsu Provience, China
  • Received:2017-11-28 Published:2019-01-15
  • Corresponding author: Kaizheng Gong
  • About author:
    Corresponding author: Gong Kaizheng, Email:
引用本文:

沈慧, 张振刚, 龚开政. 肺动脉高压动物模型与分子机制的研究进展[J/OL]. 中华临床医师杂志(电子版), 2019, 13(02): 141-146.

Hui Shen, Zhengang Zhang, Kaizheng Gong. Pulmonary hypertension: animal modeling and molecular mechanism[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(02): 141-146.

肺动脉高压(PAH)是一种以肺末梢小动脉增生重构促进肺动脉压力和阻力进行性增加为特征的严重疾病。其发病机制十分复杂,多种致病因子参与其发生发展过程。本文探讨肺动脉的离子稳态、骨形成蛋白、血管活性物质等细胞信号因子在PAH中的致病机制,为PAH分子水平干预和早期临床康复介入提供新的治疗靶点。因此,本文就目前PAH的动物造模的研究方法以及与PAH血管重构关键信号通路进行综述。

Pulmonary arterial hypertension (PAH) is a fatal disease that is characterized by hypertrophic pulmonary vascular remodeling of distal arterioles to increase pulmonary artery pressure and pulmonary vascular resistance. The pathological mechanism of PAH is very complicated and many pathogenic factors are involved in this process. This review will focus on the roles of ion homeostasis, bone morphogenetic proteins, vasoactive substances, and other cell signal factors in PAH, with an aim to provide new therapeutic targets for molecular intervention for PAH and early clinical rehabilitation intervention. For this purpose, we provide an overview of the development of several animal models of PAH and discusses several key signaling factors contributing to the vascular remodeling process.

1
Vaillancourt M, Ruffenach G, Meloche J, et al. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension [J]. Can J Cardiol, 2015, 31(4): 407-415.
2
Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease [J]. Annu Rev Physiol, 2012, 74: 13-40.
3
Xu D, Li Y, Zhang B, et al. Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats [J]. Int J Med Sci, 2016, 13(12): 942-954.
4
Naeije R, Dedobbeleer C. Pulmonary hypertension and the right ventricle in hypoxia [J]. Exp Physiol, 2013, 98(8): 1247-1256.
5
Nogueira-Ferreira R, Vitorino R, Ferreira R, et al. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach [J]. Pulm Pharmacol Ther, 2015, 35: 8-16.
6
Gomez-Arroyo J, Saleem SJ, Mizuno S, et al. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(10): L977-L991.
7
Strobl M, Schreiber C, Panzenböck A, et al. Exhaled nitric oxide measurement to monitor pulmonary hypertension in a pneumonectomy-monocrotaline rat model [J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(7): 485-490.
8
Soon E, Crosby A, Southwood M, et al. Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension [J]. Am J Respir Crit Care Med, 2015, 192(7): 859-872.
9
Davies RJ, Holmes AM, Deighton J, et al. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-beta in pulmonary artery smooth muscle cells: role of proinflammatory cytokines [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(6): L604-L615.
10
Calvier L, Chouvarine P, Legchenko E, et al. PPARγ links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism [J]. Cell Metab, 2017, 25(5): 1118-1134.
11
Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function [J]. Am J Physiol Cell Physiol, 2011, 300(5): C951-C967.
12
Song S, Yamamura A, Yamamura H, et al. Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension [J]. Am J Physiol Cell Physiol, 2014, 307(4): C373-C383.
13
王益波, 马改改, 陈安, 等. 特发性肺动脉高压发病机制的新进展 [J]. 中国循环杂志, 2015, 30(6): 605-607.
14
Bonnet S, Rochefort G, Sutendra G, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted [J]. Proc Natl Acad Sci USA, 2007, 104(27): 11418-11423.
15
Hayabuchi Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension [J]. Pediatr Cardiol, 2017, 38(1): 1-14.
16
Huetsch JC, Jiang H, Larrain C, et al. The Na/H exchanger contributes to increased smooth muscle proliferation and migration in a rat model of pulmonary arterial hypertension [J]. Physiol Rep, 2016, 4(5). pii: e12729.
17
Huetsch J, Shimoda LA. Na()/H() exchange and hypoxic pulmonary hypertension [J]. Pulm Circ, 2015, 5(2): 228-243.
18
Yu L, Hales CA. Silencing of sodium-hydrogen exchanger 1 attenuates the proliferation, hypertrophy, and migration of pulmonary artery smooth muscle cells via E2F1 [J]. Am J Respir Cell Mol Biol, 2011, 45(5): 923-930.
19
王瑾, 向莉莉, 李晓晖. 骨形成蛋白Ⅱ型受体信号通路与肺动脉高压:新进展与希望 [J]. 中国药理学与毒理学杂志, 2017, 31(2): 119-130.
20
Cai J, Pardali E, Sanchez-Duffhues G, et al. BMP signaling in vascular diseases [J]. FEBS letters, 2012, 586(14): 1993-2002.
21
Lowery JW, de Caestecker MP. BMP signaling in vascular development and disease [J]. Cytokine Growth Factor Rev, 2010, 21(4): 287-298.
22
Yang J, Li X, Al-Lamki RS, et al. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension [J]. Arterioscler Thromb Vasc Biol, 2013, 33(1): 34-42.
23
Broege A, Pham L, Jensen ED, et al. Bone morphogenetic proteins signal via SMAD and mitogen-activated protein (MAP) kinase pathways at distinct times during osteoclastogenesis [J]. J Biol Chem, 2013, 288(52): 37230-37240.
24
Soubrier F, Chung WK, Machado R, et al. Genetics and genomics of pulmonary arterial hypertension [J]. Turk Kardiyol Dern Ars, 2014, 42 Suppl 1: 17-28.
25
Diebold I, Hennigs J, Miyagawa K, et al. BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension [J]. Cell Metab, 2015, 21(4): 596-608.
26
Hopper RK, Moonen JA, Diebold I, et al. In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target Slug [J]. Circulation, 2016, 133(18): 1783-1794.
27
Orriols M, Gomez-Puerto MC, Ten Dijke P. BMP type Ⅱ receptor as a therapeutic target in pulmonary arterial hypertension [J]. Cell Mol Life Sci, 2017, 74(16): 2979-2995.
28
Meloche J, Pflieger A, Vaillancourt M, et al. Role for DNA damage signaling in pulmonary arterial hypertension [J]. Circulation, 2014, 129(7): 786-797.
29
Li M, Vattulainen S, Aho J, et al. Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension [J]. Am J Respir Cell Mol Biol, 2014, 50(6): 1118-1128.
30
Khadka A, Singh Brashier DB, Tejus A, et al. Macitentan: An important addition to the treatment of pulmonary arterial hypertension [J]. J Pharmacol Pharmacother, 2015, 6(1): 53-57.
31
Yu J, Taylor L, Wilson J, et al. Altered expression and signal transduction of endothelin-1 receptors in heritable and idiopathic pulmonary arterial hypertension [J]. J Cell Physiol, 2013, 228(2): 322-329.
32
Kij A, Mateuszuk L, Sitek B, et al. Simultaneous quantification of PGI2 and TXA2 metabolites in plasma and urine in NO-deficient mice by a novel UHPLC/MS/MS method [J]. J Pharm Biomed Anal, 2016, 129: 148-154.
33
Falcetti E, Hall SM, Phillips PG, et al. Smooth muscle proliferation and role of the prostacyclin (IP) receptor in idiopathic pulmonary arterial hypertension [J]. Am J Respir Crit Care Med, 2010, 182(9): 1161-1170.
34
Chu LY, Liou JY, Wu KK. Prostacyclin protects vascular integrity via PPAR/14-3-3 pathway [J]. Prostaglandins Other Lipid Media, 2015, 118-119: 19-27.
35
Chen YC, Chu LY, Yang SF, et al. Prostacyclin and PPARalpha agonists control vascular smooth muscle cell apoptosis and phenotypic switch through distinct 14-3-3 isoforms [J]. PloS one, 2013, 8(7): e69702.
36
Romero M, Toral M, Robles-Vera I, et al. Activation of peroxisome proliferator activator receptor β/δ improves endothelial dysfunction and protects kidney in murine lupus [J]. Hypertension, 2017, 69(4): 641-650.
37
Ahmadian M, Suh JM, Hah N, et al. PPARgamma signaling and metabolism: the good, the bad and the future [J]. Nat Med, 2013, 19(5): 557-566.
38
Liu Y, Tian XY, Mao G, et al. Peroxisome proliferator-activated receptor-gamma ameliorates pulmonary arterial hypertension by inhibiting 5-hydroxytryptamine 2B receptor [J]. Hypertension, 2012, 60(6): 1471-1478.
39
Bertero T, Cottrill K, Krauszman A, et al. The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension [J]. J Biol Chem, 2015, 290(4): 2069-2085.
40
Bertero T, Yu L, Annis S, et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension [J]. J Clin Invest, 2014, 124(8): 3514-3528.
41
Hansmann G, de Jesus Perez VA, Alastalo TP, et al. An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension [J]. J Clin Invest, 2008, 118(5): 1846-1857.
42
Chen YF, Feng JA, Li P, et al. Dominant negative mutation of the TGF-beta receptor blocks hypoxia-induced pulmonary vascular remodeling [J]. J Appl Physiol, 2006, 100(2): 564-571.
43
Gong K, Xing D, Li P, et al. Hypoxia induces downregulation of PPAR-gamma in isolated pulmonary arterial smooth muscle cells and in rat lung via transforming growth factor-beta signaling [J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(6): L899-L907.
44
刘洪涛, 曾艳, 苟德明. 缺氧诱导因子1调控缺氧性肺动脉高压的研究进展 [J]. 中华高血压杂志, 2014, 22(7): 629-634.
45
Li Y, Shi B, Huang L, et al. Suppression of the expression of hypoxia-inducible factor-1alpha by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats [J]. Int J Mol Med, 2016, 38(6): 1786-1794.
46
Abud EM, Maylor J, Undem C, et al. Digoxin inhibits development of hypoxic pulmonary hypertension in mice [J]. Proc Natl Acad Sci U S A, 2012, 109(4): 1239-1244.
[1] 吴义刚, 潘裕民, 吴姗姗, 胡梦涓, 王一为, 张劲松, 乔莉. 左西孟旦治疗肺动脉高压合并右心衰竭患者疗效分析——Meta 分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 385-391.
[2] 娜菲沙·沙木西丁, 艾科热木·开赛尔江, 王雅琦, 李万富. 先天性腹壁缺损患儿的发病机制及创新治疗[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 468-475.
[3] 唐瑞政, 李舒珏, 吴文起. 果蝇模型在肾结石研究中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 214-218.
[4] 张子旭, 郑俊炯, 罗云, 林天歆. 腹腔镜肾部分切除术离体猪肾培训模型的构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 277-283.
[5] 宋新雅, 苏小慧, 卞士柱, 丁小涵. 吸入性药物治疗肺动脉高压的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 831-835.
[6] 罗霞, 王宝梅, 李淑景, 杨英. 特发性肺动脉高压血清PCSK9表达及预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 585-589.
[7] 朱佑君, 付万垒, 毛杨, 李德峰. 细胞外基质相关标志物与成纤维细胞在肺动脉高压发展中的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 356-362.
[8] 张艺萱, 罗金丹, 葛小丽, 钟红琴. 先天性心脏病伴PH血清H-FABP、NT-proBNP与肺动脉内径、血流速度及PASP的关系[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 252-255.
[9] 王浩年, 孙备, 陈华. 胆管内乳头状肿瘤的诊治策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 140-144.
[10] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[11] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[12] 吴欣, 袁晓晨, 沈慧, 秦建华. 三尖瓣反流速度评估肺动脉高压患者心脏结构改变的研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 259-267.
[13] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
[14] 孟丽君, 宋芹, 邵莉, 李健. 系统性红斑狼疮合并肺动脉高压患者外周血T淋巴细胞亚群水平变化及临床意义[J/OL]. 中华诊断学电子杂志, 2024, 12(01): 38-43.
[15] 龚霄雷, 朱丽敏, 姜燕, 徐卓明. 急性右心室功能障碍的诊疗进展[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 161-168.
阅读次数
全文


摘要