切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 141 -146. doi: 10.3877/cma.j.issn.1674-0785.2019.02.012

所属专题: 文献

综述

肺动脉高压动物模型与分子机制的研究进展
沈慧1, 张振刚1, 龚开政1,()   
  1. 1. 225012 江苏扬州,扬州大学附属医院心血管内科
  • 收稿日期:2017-11-28 出版日期:2019-01-15
  • 通信作者: 龚开政
  • 基金资助:
    国家自然科学基金资助项目(81470381); 江苏省六大人才高峰资助项目(2014-WSN-077); 扬州大学研究生国际学术交流专项基金项目(2018年度)

Pulmonary hypertension: animal modeling and molecular mechanism

Hui Shen1, Zhengang Zhang1, Kaizheng Gong1,()   

  1. 1. Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou 225012, Jiangsu Provience, China
  • Received:2017-11-28 Published:2019-01-15
  • Corresponding author: Kaizheng Gong
  • About author:
    Corresponding author: Gong Kaizheng, Email:
引用本文:

沈慧, 张振刚, 龚开政. 肺动脉高压动物模型与分子机制的研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(02): 141-146.

Hui Shen, Zhengang Zhang, Kaizheng Gong. Pulmonary hypertension: animal modeling and molecular mechanism[J]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(02): 141-146.

肺动脉高压(PAH)是一种以肺末梢小动脉增生重构促进肺动脉压力和阻力进行性增加为特征的严重疾病。其发病机制十分复杂,多种致病因子参与其发生发展过程。本文探讨肺动脉的离子稳态、骨形成蛋白、血管活性物质等细胞信号因子在PAH中的致病机制,为PAH分子水平干预和早期临床康复介入提供新的治疗靶点。因此,本文就目前PAH的动物造模的研究方法以及与PAH血管重构关键信号通路进行综述。

Pulmonary arterial hypertension (PAH) is a fatal disease that is characterized by hypertrophic pulmonary vascular remodeling of distal arterioles to increase pulmonary artery pressure and pulmonary vascular resistance. The pathological mechanism of PAH is very complicated and many pathogenic factors are involved in this process. This review will focus on the roles of ion homeostasis, bone morphogenetic proteins, vasoactive substances, and other cell signal factors in PAH, with an aim to provide new therapeutic targets for molecular intervention for PAH and early clinical rehabilitation intervention. For this purpose, we provide an overview of the development of several animal models of PAH and discusses several key signaling factors contributing to the vascular remodeling process.

1
Vaillancourt M, Ruffenach G, Meloche J, et al. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension [J]. Can J Cardiol, 2015, 31(4): 407-415.
2
Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease [J]. Annu Rev Physiol, 2012, 74: 13-40.
3
Xu D, Li Y, Zhang B, et al. Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats [J]. Int J Med Sci, 2016, 13(12): 942-954.
4
Naeije R, Dedobbeleer C. Pulmonary hypertension and the right ventricle in hypoxia [J]. Exp Physiol, 2013, 98(8): 1247-1256.
5
Nogueira-Ferreira R, Vitorino R, Ferreira R, et al. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach [J]. Pulm Pharmacol Ther, 2015, 35: 8-16.
6
Gomez-Arroyo J, Saleem SJ, Mizuno S, et al. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(10): L977-L991.
7
Strobl M, Schreiber C, Panzenböck A, et al. Exhaled nitric oxide measurement to monitor pulmonary hypertension in a pneumonectomy-monocrotaline rat model [J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(7): 485-490.
8
Soon E, Crosby A, Southwood M, et al. Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension [J]. Am J Respir Crit Care Med, 2015, 192(7): 859-872.
9
Davies RJ, Holmes AM, Deighton J, et al. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-beta in pulmonary artery smooth muscle cells: role of proinflammatory cytokines [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(6): L604-L615.
10
Calvier L, Chouvarine P, Legchenko E, et al. PPARγ links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism [J]. Cell Metab, 2017, 25(5): 1118-1134.
11
Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function [J]. Am J Physiol Cell Physiol, 2011, 300(5): C951-C967.
12
Song S, Yamamura A, Yamamura H, et al. Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension [J]. Am J Physiol Cell Physiol, 2014, 307(4): C373-C383.
13
王益波, 马改改, 陈安, 等. 特发性肺动脉高压发病机制的新进展 [J]. 中国循环杂志, 2015, 30(6): 605-607.
14
Bonnet S, Rochefort G, Sutendra G, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted [J]. Proc Natl Acad Sci USA, 2007, 104(27): 11418-11423.
15
Hayabuchi Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension [J]. Pediatr Cardiol, 2017, 38(1): 1-14.
16
Huetsch JC, Jiang H, Larrain C, et al. The Na/H exchanger contributes to increased smooth muscle proliferation and migration in a rat model of pulmonary arterial hypertension [J]. Physiol Rep, 2016, 4(5). pii: e12729.
17
Huetsch J, Shimoda LA. Na()/H() exchange and hypoxic pulmonary hypertension [J]. Pulm Circ, 2015, 5(2): 228-243.
18
Yu L, Hales CA. Silencing of sodium-hydrogen exchanger 1 attenuates the proliferation, hypertrophy, and migration of pulmonary artery smooth muscle cells via E2F1 [J]. Am J Respir Cell Mol Biol, 2011, 45(5): 923-930.
19
王瑾, 向莉莉, 李晓晖. 骨形成蛋白Ⅱ型受体信号通路与肺动脉高压:新进展与希望 [J]. 中国药理学与毒理学杂志, 2017, 31(2): 119-130.
20
Cai J, Pardali E, Sanchez-Duffhues G, et al. BMP signaling in vascular diseases [J]. FEBS letters, 2012, 586(14): 1993-2002.
21
Lowery JW, de Caestecker MP. BMP signaling in vascular development and disease [J]. Cytokine Growth Factor Rev, 2010, 21(4): 287-298.
22
Yang J, Li X, Al-Lamki RS, et al. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension [J]. Arterioscler Thromb Vasc Biol, 2013, 33(1): 34-42.
23
Broege A, Pham L, Jensen ED, et al. Bone morphogenetic proteins signal via SMAD and mitogen-activated protein (MAP) kinase pathways at distinct times during osteoclastogenesis [J]. J Biol Chem, 2013, 288(52): 37230-37240.
24
Soubrier F, Chung WK, Machado R, et al. Genetics and genomics of pulmonary arterial hypertension [J]. Turk Kardiyol Dern Ars, 2014, 42 Suppl 1: 17-28.
25
Diebold I, Hennigs J, Miyagawa K, et al. BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension [J]. Cell Metab, 2015, 21(4): 596-608.
26
Hopper RK, Moonen JA, Diebold I, et al. In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target Slug [J]. Circulation, 2016, 133(18): 1783-1794.
27
Orriols M, Gomez-Puerto MC, Ten Dijke P. BMP type Ⅱ receptor as a therapeutic target in pulmonary arterial hypertension [J]. Cell Mol Life Sci, 2017, 74(16): 2979-2995.
28
Meloche J, Pflieger A, Vaillancourt M, et al. Role for DNA damage signaling in pulmonary arterial hypertension [J]. Circulation, 2014, 129(7): 786-797.
29
Li M, Vattulainen S, Aho J, et al. Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension [J]. Am J Respir Cell Mol Biol, 2014, 50(6): 1118-1128.
30
Khadka A, Singh Brashier DB, Tejus A, et al. Macitentan: An important addition to the treatment of pulmonary arterial hypertension [J]. J Pharmacol Pharmacother, 2015, 6(1): 53-57.
31
Yu J, Taylor L, Wilson J, et al. Altered expression and signal transduction of endothelin-1 receptors in heritable and idiopathic pulmonary arterial hypertension [J]. J Cell Physiol, 2013, 228(2): 322-329.
32
Kij A, Mateuszuk L, Sitek B, et al. Simultaneous quantification of PGI2 and TXA2 metabolites in plasma and urine in NO-deficient mice by a novel UHPLC/MS/MS method [J]. J Pharm Biomed Anal, 2016, 129: 148-154.
33
Falcetti E, Hall SM, Phillips PG, et al. Smooth muscle proliferation and role of the prostacyclin (IP) receptor in idiopathic pulmonary arterial hypertension [J]. Am J Respir Crit Care Med, 2010, 182(9): 1161-1170.
34
Chu LY, Liou JY, Wu KK. Prostacyclin protects vascular integrity via PPAR/14-3-3 pathway [J]. Prostaglandins Other Lipid Media, 2015, 118-119: 19-27.
35
Chen YC, Chu LY, Yang SF, et al. Prostacyclin and PPARalpha agonists control vascular smooth muscle cell apoptosis and phenotypic switch through distinct 14-3-3 isoforms [J]. PloS one, 2013, 8(7): e69702.
36
Romero M, Toral M, Robles-Vera I, et al. Activation of peroxisome proliferator activator receptor β/δ improves endothelial dysfunction and protects kidney in murine lupus [J]. Hypertension, 2017, 69(4): 641-650.
37
Ahmadian M, Suh JM, Hah N, et al. PPARgamma signaling and metabolism: the good, the bad and the future [J]. Nat Med, 2013, 19(5): 557-566.
38
Liu Y, Tian XY, Mao G, et al. Peroxisome proliferator-activated receptor-gamma ameliorates pulmonary arterial hypertension by inhibiting 5-hydroxytryptamine 2B receptor [J]. Hypertension, 2012, 60(6): 1471-1478.
39
Bertero T, Cottrill K, Krauszman A, et al. The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension [J]. J Biol Chem, 2015, 290(4): 2069-2085.
40
Bertero T, Yu L, Annis S, et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension [J]. J Clin Invest, 2014, 124(8): 3514-3528.
41
Hansmann G, de Jesus Perez VA, Alastalo TP, et al. An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension [J]. J Clin Invest, 2008, 118(5): 1846-1857.
42
Chen YF, Feng JA, Li P, et al. Dominant negative mutation of the TGF-beta receptor blocks hypoxia-induced pulmonary vascular remodeling [J]. J Appl Physiol, 2006, 100(2): 564-571.
43
Gong K, Xing D, Li P, et al. Hypoxia induces downregulation of PPAR-gamma in isolated pulmonary arterial smooth muscle cells and in rat lung via transforming growth factor-beta signaling [J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(6): L899-L907.
44
刘洪涛, 曾艳, 苟德明. 缺氧诱导因子1调控缺氧性肺动脉高压的研究进展 [J]. 中华高血压杂志, 2014, 22(7): 629-634.
45
Li Y, Shi B, Huang L, et al. Suppression of the expression of hypoxia-inducible factor-1alpha by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats [J]. Int J Mol Med, 2016, 38(6): 1786-1794.
46
Abud EM, Maylor J, Undem C, et al. Digoxin inhibits development of hypoxic pulmonary hypertension in mice [J]. Proc Natl Acad Sci U S A, 2012, 109(4): 1239-1244.
[1] 黄钰清, 武杜杜, 潘菲, 王俊康, 钟兆明, 黎檀实, 吕发勤. 掌上超声在枪弹伤致髂动脉破裂大出血建模中的应用研究[J]. 中华医学超声杂志(电子版), 2022, 19(10): 1112-1117.
[2] 李传举, 刘林月, 王美, 李昕, 韩祥辉, 贾海永. 乙型肝炎病毒感染模型研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 361-365.
[3] 吴丽娜, 魏林, 曾志贵, 张梁, 何恩辉, 檀玉乐, 朱志军, 孙丽莹. 肺动脉高压靶向药物联合肝移植治疗重度门脉性肺动脉高压一例[J]. 中华移植杂志(电子版), 2022, 16(06): 376-378.
[4] 郑珊珊, 郑哲, 黄洁, 廖中凯, 宋云虎, 房晓楠, 刘盛. 主动脉内球囊反搏作为心脏移植桥接治疗对晚期心力衰竭合并肺动脉高压患者的疗效[J]. 中华移植杂志(电子版), 2022, 16(05): 277-284.
[5] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[6] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[7] 张璐, 卞士柱. 肺动脉高压患者药物治疗依从性及健康管理分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 107-109.
[8] 任成山, 卞士柱, 胡明冬. 肺动脉高压的成因及治疗新理念[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 1-5.
[9] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[10] 金玺, 孙康, 郭建, 孔梅. 结直肠癌肝转移发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 163-166.
[11] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[12] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
[13] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[14] 王金志, 陶新曹, 谢万木, 傅志辉, 赵蕴伟, 黄强, 翟振国. 球囊肺动脉成形术在慢性血栓栓塞性肺动脉高压治疗中的进展[J]. 中华介入放射学电子杂志, 2023, 11(03): 262-267.
[15] 高飞, 李惠凯, 冯秀雪, 杜晨, 韩珂, 柴宁莉, 令狐恩强. 3%聚桂醇消融动物囊性肿瘤模型的有效性和安全性研究[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 31-36.
阅读次数
全文


摘要