切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (07) : 544 -547. doi: 10.3877/cma.j.issn.1674-0785.2019.07.013

所属专题: 文献

综述

中性粒细胞对动脉粥样硬化免疫机制影响的研究进展
孙慧娟1, 朱鏐娈2, 曾辉2, 马雅銮1,()   
  1. 1. 100700 北京,中国中医科学院中医基础理论研究所病证研究中心
    2. 100015 首都医科大学附属北京地坛医院传染病研究所;100015 新发突发传染病研究北京市重点实验室
  • 收稿日期:2019-01-16 出版日期:2019-04-01
  • 通信作者: 马雅銮
  • 基金资助:
    中国中医科学院自主选题研究项目(YZ-1702、YZ-1814)

Progress in understanding of effect of neutrophils on immune mechanism of atherosclerosis

Huijuan Sun1, Liuluan Zhu2, Hui Zeng2, Yaluan Ma1,()   

  1. 1. The Institute of Basic Medical Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
    2. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
  • Received:2019-01-16 Published:2019-04-01
  • Corresponding author: Yaluan Ma
  • About author:
    Corresponding author: Ma Yaluan, Email:
引用本文:

孙慧娟, 朱鏐娈, 曾辉, 马雅銮. 中性粒细胞对动脉粥样硬化免疫机制影响的研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(07): 544-547.

Huijuan Sun, Liuluan Zhu, Hui Zeng, Yaluan Ma. Progress in understanding of effect of neutrophils on immune mechanism of atherosclerosis[J]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(07): 544-547.

动脉粥样硬化(AS)与脂质代谢紊乱、炎症密切相关。AS炎症不仅局限于血管局部,还包括多种免疫细胞异常导致的全身免疫紊乱。既往认为参与AS的免疫细胞以单核-巨噬细胞为主。中性粒细胞是天然免疫系统中数量庞大、高效应答的细胞群,但由于寿命短、更新迅速,在AS中的作用未引起足够重视。在AS炎症反应早期,中性粒细胞可诱导内皮功能障碍、促进泡沫细胞形成和炎症反应,加速AS斑块形成、发展;在AS炎症反应后期,中性粒细胞参与斑块内血管损伤、坏死核形成和纤维帽变薄,促进不稳定斑块破裂,并激活血小板,继发血栓形成。因此,调控中性粒细胞可能是防治AS的新靶点。

Atherosclerosis (AS) is not only closely related to lipid metabolism disorder, but also to inflammation. And it is not only inflammatory lesions in local vessels, but also a systemic immune disorder involving a variety of immune cells. In the past, it was thought that monocytes/macrophages are the main immune cells involved in AS. Neutrophils are a large, highly responsive population of cells in the innate immune system, but the role of neutrophils in AS has not attracted much attention due to their short life span and rapid renewal. In recent years, many studies have found that neutrophils can induce endothelial dysfunction, promote foam cell formation and inflammatory response, and accelerate the formation and development of plaques in the early stage of AS inflammation. In the late stage, neutrophils participate in vascular injury, necrotic nucleus formation, and fibrous cap thinning in plaques, and promote unstable plaque rupture, thereby activating platelets and secondary thrombosis. Therefore, the regulation of neutrophils may be a new target for the prevention and treatment of AS.

[1]
陈伟伟, 高润霖, 刘力生, 等. 《中国心血管病报告2017》概要 [J]. 中国循环杂志, 2018, 33(1):1-8.
[2]
Businaro R, Tagliani A, Buttari B, et al. Cellular and molecular players in the atherosclerotic plaque progression [J]. Ann NY Acad Sci, 2012, 1262: 134-141.
[3]
Chistiakov DA, Grechko AV, Myasoedova VA, et al. The role of monocytosis and neutrophilia in atherosclerosis [J]. Cell Mol Med, 2018, 22(3): 1366-1382.
[4]
Chistiakov DA, Orekhov AN, Bobryshev YV. Immune-inflammatory responses in atherosclerosis: role of an adaptive immunity mainly driven by T and B cells [J]. Immunobiology, 2016, 221(9): 1014-1033.
[5]
Chistiakov DA, Bobryshev YV, Orekhov AN. Neutrophil′s weapons in atherosclerosis [J]. Exp Mol Pathol, 2015, 99(3): 663-671.
[6]
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation [J]. Nat Rev Immuno, 2013, 13(3): 159-175.
[7]
Zhang X, Zhang W, Yuan X, et al. Neutrophils in cancer development and progression: Roles, mechanisms, and implications [J]. Int J Oncol, 2016, 49(3): 857-867.
[8]
Carbone F, Mach F, Montecucco F. Update on the role of neutrophils in atherosclerotic plaque vulnerability [J]. Curr Drug Targets, 2015, 16(4): 321-333.
[9]
Drechsler M, Megens RT, Van ZM, et al. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis [J]. Circulation, 2010, 122(18): 1837-1845.
[10]
Meng LB, Yu ZM, Guo P, et al. Neutrophils and neutrophil-lymphocyte ratio: Inflammatory markers associated with intimal-media thickness of atherosclerosis [J]. Thromb Res, 2018, 170: 45-52.
[11]
Nam KW, Kwon HM, Jeong HY, et al. High neutrophil to lymphocyte ratios predict intracranial atherosclerosis in a healthy population [J]. Atherosclerosis, 2018, 269(3): 117-121.
[12]
Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity [J]. Nat Rev Immunol, 2015, 15(2): 104-116.
[13]
Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state [J]. Arterioscl Throm Vascular, 2013, 33(8): 2032-2040.
[14]
Yamamoto K, Yamada H, Wakana N, et al. Augmented neutrophil extracellular traps formation promotes atherosclerosis development in socially defeated apoE-/- mice [J]. Biochem Biophys Res Commun, 2018, 500 (2): 490-496.
[15]
Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus [J]. J Immunol, 2011, 187(1): 538-552.
[16]
Malle E, Marsche G, Arnhold J, et al. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid [J]. Biochim Biophys Acta, 2006, 1761(4): 392-415.
[17]
Soehnlein O, Weber C, Lindbom L. Neutrophil granule proteins tune monocytic cell function [J]. Trends Immunol, 2009, 30(11): 538-546.
[18]
Quinn KL, Henriques M, Tabuchi A, et al. Human neutrophil peptides mediate endothelial-monocyte interaction, foam cell formation, and platelet activation [J]. Arterioscl Throm Vascular, 2011, 31(9): 2070-2079.
[19]
Wen G, An W, Chen J, et al. Genetic and pharmacologic inhibition of the neutrophil elastase inhibits experimental atherosclerosis [J]. J Am Heart Assoc, 2018, 7(4): 8175-8187.
[20]
Rotzius P, Thams S, Soehnlein O, et al. Distinct infiltration of neutrophils in lesion shoulders in ApoE-/- mice [J]. Am J Pathol, 2010, 177(1): 493-500.
[21]
Ionita MG, van den Borne P, Catanzariti LM, et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions [J]. Arterioscler Thromb Vasc Biol, 2010, 30(9): 1842-1848.
[22]
Borregaard N, Sorensen OE, Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins [J]. Trends Immunol, 2007, 28(8): 340-345.
[23]
Warnatsch A, Ioannou M, Wang Q, et al. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis [J]. Science, 2015, 349(6245): 316-320.
[24]
Döring Y, Manthey HD, Drechsler M, et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis [J]. Circulation, 2012, 125(13): 1673-1683.
[25]
Paulin N, Döring Y, Kooijman S, et al. Human neutrophil peptide 1 limits hypercholesterolemia-induced atherosclerosis by increasing hepatic LDL clearance [J]. Ebiomedicine, 2017, 16: 204-211.
[26]
Lenglet S, Thomas A, Soehnlein O, et al. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice [J]. Arterioscler Thromb Vasc Biol, 2013, 33(2): 215-223.
[27]
Lingrel JB, Pilcherroberts R, Basford JE, et al. Myeloid-specific krüppel-like factor 2 inactivation increases macrophage and neutrophil adhesion and promotes atherosclerosis [J]. Circ Res, 2012, 110(10): 1294-1302.
[28]
Li X, de Boer OJ, Ploegmaker H, et al. Granulocytes in coronary thrombus evolution after myocardial infarction-time-dependent changes in expression of matrix metalloproteinases [J]. Cardiovasc Pathol, 2016, 25(1): 40-46.
[29]
Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability [J]. Acta Physiol, 2015, 213(3): 539-553.
[30]
Friggeri A, Yang Y, Banerjee S, et al. HMGB1 inhibits macrophage activity in efferocytosis through binding to the alphavbeta3-integrin [J]. Am J Physiol Cell Physiol, 2010, 299(6): C1267-C1276.
[31]
Driscoll WS, Vaisar T, Tang J, et al. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype [J]. Circ Res, 2013, 113(1): 52-61.
[32]
Wang J, Sjöberg S, Tang TT, et al. Cathepsin G activity lowers plasma LDL and reduces atherosclerosis [J]. Bba-mol Basis Dis, 2014, 1842(11): 2174-2183.
[33]
Gomes AL, Benevides NM, Carbone F, et al. Update on selective treatments targeting neutrophilic inflammation in atherogenesis and atherothrombosis [J]. J Thromb Haemost, 2014, 111(4): 634-646.
[34]
Gremmel T, Durstberger M, Eichelberger B, et al. Human neutrophil α-defensins are associated with adenosine diphosphate-inducible neutrophil-platelet aggregate formation and response to clopidogrel in patients with atherosclerosis [J]. Transl Res, 2014, 164(3): 202-208.
[35]
Sørensen OE, Borregaard N. Neutrophil extracellular traps-the dark side of neutrophils [J]. J Clin Invest, 2016, 126(5): 1612-1620.
[36]
Mozzini C, Garbin U, Fratta AM, et al. An exploratory look at NETosis in atherosclerosis [J]. Intern Emerg Med, 2017, 12(1): 13-22.
[37]
Angelillo A. Leukocyte-derived microparticles in vascular homeostasis [J]. Circ Res, 2012, 110(2): 356-369.
[38]
Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease [J]. Cell Tissue Res, 2018, 371(3): 551-565.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[4] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[5] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[6] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[7] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[8] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[9] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要