1 |
Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000[J]. N Engl J Med, 2003, 348(16): 1546-1554.
|
2 |
Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units[J]. JAMA, 2009, 302(21): 2323-2329.
|
3 |
Schroder K, Tschopp J. The Inflammasomes[J]. Cell, 2010, 140(6): 821-832.
|
4 |
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384.
|
5 |
van der Poll T, Opal SM. Host-pathogen interactions in sepsis[J]. Lancet Infect Dis, 2008, 8(1): 32-43.
|
6 |
von Bernuth H, Picard C, Jin Z, et al. Pyogenic Bacterial Infections in Humans with MyD88 Deficiency[J]. Science, 2008, 321(5889): 691-696.
|
7 |
Núñez G. Intracellular sensors of microbes and danger[J]. Immunol Rev, 2011, 243(1): 5-8.
|
8 |
Moreira LO, Zamboni DS. NOD1 and NOD2 Signaling in Infection and Inflammation[J]. Front Immunol, 2012, 3: 328.
|
9 |
Weaver CT, Hatton RD, Mangan PR, et al. IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages[J]. Annu Rev Immunol, 2007, 25(1): 821-852.
|
10 |
Flierl MA, Rittirsch D, Gao H, et al. Adverse functions of IL-17A in experimental sepsis[J]. FASEB J, 2008, 22(7): 2198-2205.
|
11 |
Lin X, Luo H, Yan X, et al. Interleukin-34 Ameliorates Survival and Bacterial Clearance in Polymicrobial Sepsis[J]. Crit Care Med, 2018: 46(6): e584-e590.
|
12 |
Vogl T, Tenbrock K, Ludwig S, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock[J]. Nat Medicine, 2007, 13(9): 1042-1049.
|
13 |
Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger[J]. J Leukoc Biol, 2007, 81(1): 1-5.
|
14 |
Kaplan MJ, Radic M. Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity[J]. J Immunol, 2012, 189(6): 2689-2695.
|
15 |
Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans[J]. PLoS Pathog, 2009, 5(10): e1000639.
|
16 |
Chen L, Zhao Y, Lai D, et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis[J]. Cell Death Dis, 2018, 9(6): 597.
|
17 |
Ward PA. The Harmful Role of C5a on Innate Immunity in Sepsis[J]. J Innate Immun, 2010, 2(5): 439-445.
|
18 |
Rauch PJ, Chudnovskiy A, Robbins CS, et al. Innate Response Activator B Cells Protect Against Microbial Sepsis[J]. Science, 2012, 335(6068): 597-601.
|
19 |
Suzuki K, Inoue S, Kametani Y, et al. Reduced Immunocompetent B Cells and Increased Secondary Infection in Elderly Patients With Severe Sepsis[J]. Shock, 2016, 46(3): 270-278.
|
20 |
Hotchkiss RS, Coopersmith CM, Karl IE. Prevention of lymphocyte apoptosis--a potential treatment of sepsis?[J]. Clin Infect Dis, 2005, 41 Suppl 7: S465-S469.
|
21 |
Lang JD, Matute-Bello G. Lymphocytes, apoptosis and sepsis: making the jump from mice to humans[J]. Crit Care, 2009, 13(1): 109.
|
22 |
Hotchkiss RS, Swanson PE, Cobb JP, et al. Apoptosis in lymphoid and parenchymal cells during sepsis: Findings in normal and T- and B-cell- deficient mice[J]. Crit Care Med, 1997, 25(8): 1298-1307.
|
23 |
Hotchkiss RS, Osmon SB, Chang KC, et al. Accelerated Lymphocyte Death in Sepsis Occurs by both the Death Receptor and Mitochondrial Pathways[J]. J Immunol, 2005, 174(8): 5110-5118.
|
24 |
Liu ZG, Ni SY, Chen GM, et al. Histones-Mediated Lymphocyte Apoptosis during Sepsis Is Dependent on p38 Phosphorylation and Mitochondrial Permeability Transition[J]. PLoS One, 2013, 8(10): e77131.
|
25 |
Grailer JJ, Fattahi F, Dick RS, et al. Cutting Edge: Critical Role for C5aRs in the Development of Septic Lymphopenia in Mice[J]. J Immunol, 2015, 194(3): 868-872.
|
26 |
Jensen IJ, Winborn CS, Fosdick MG, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections[J]. PLoS Pathog, 2018, 14(10): e1007405.
|
27 |
Andreu-Ballester JC, Tormo-Calandin C, Garcia-Ballesteros C, et al. Association of γδ T Cells with Disease Severity and Mortality in Septic Patients[J]. Clin Vaccine Immunol, 2013, 20(5): 738-746.
|
28 |
Grimaldi D, Le Bourhis L, Sauneuf B, et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections[J]. Intensive Care Med, 2014, 40(2): 192-201.
|
29 |
Boomer JS, To K, Chang KC, et al. Immunosuppression in Patients Who Die of Sepsis and Multiple Organ Failure[J]. JAMA, 2011, 306(23): 2594.
|
30 |
Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+T lymphocytes in humans[J]. J Immunol, 2001, 166(11): 6952-6963.
|
31 |
Venet F, Chung CS, Kherouf H, et al. Increased circulating regulatory T cells (CD4(+)CD25(+)CD127(-)) contribute to lymphocyte anergy in septic shock patients[J]. Intensive Care Med, 2009, 35(4): 678-686.
|
32 |
Scumpia PO, Delano MJ, Kelly-Scumpia KM, et al. Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis[J]. Blood, 2007, 110(10): 3673-3681.
|
33 |
Nolt B, Tu F, Wang X, et al. Lactate and immunosuppression in sepsis[J]. Shock, 2018, 49(2): 120-125.
|