切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 487 -490. doi: 10.3877/cma.j.issn.1674-0785.2023.04.021

所属专题: 急危重症

综述

肝素结合蛋白在脓毒症中的应用及研究进展
蔡荇, 郑瑞强()   
  1. 225001 江苏扬州,江苏省苏北人民医院重症医学科
  • 收稿日期:2022-03-22 出版日期:2023-04-15
  • 通信作者: 郑瑞强

Progress in application of heparin-binding protein in sepsis

Xing Cai, Ruiqiang Zheng()   

  1. Department of Critical Care Medicine, Northern Jiangsu People's Hospital, Yangzhou 225001, China
  • Received:2022-03-22 Published:2023-04-15
  • Corresponding author: Ruiqiang Zheng
引用本文:

蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.

Xing Cai, Ruiqiang Zheng. Progress in application of heparin-binding protein in sepsis[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(04): 487-490.

肝素结合蛋白(HBP)是中性粒细胞受到外界刺激后释放产生的颗粒蛋白,在增加血管内皮通透性、趋化特性及调节炎症反应方面起着至关重要的作用。近年来,随着对HBP研究的逐渐深入,发现HBP可作为诊断脓毒症的早期生物标志物,并证实HBP可预测脓毒症患者疾病严重程度并判断预后情况。本文就HBP在脓毒症中的临床价值进行综述。

Heparin-binding protein (HBP) is a kind of granule protein produced by neutrophils in response to external stimuli. It plays a crucial role in increasing vascular permeability, chemotaxis, and regulating inflammatory response In recent years, studies have found that HBP can be used as an early predictor of sepsis. In addition, it has been confirmed that HBP can be used to evaluate the disease severity and prognosis in sepsis patients. This review focuses on the clinical value of HBP in sepsis.

1
Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 775-787.
2
Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management [J]. BMJ, 2016, 353: i1585.
3
Linder A, Lee T, Fisher J, et al. Short-term organ dysfunction is associated with long-term (10-Yr) mortality of septic shock [J]. Crit Care Med, 2016, 44(8): e728-736.
4
Tapper H, Karlsson A, Mörgelin M, et al. Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles [J]. Blood, 2002, 99(5): 1785-1793.
5
Ma H, Liu H, Wu C, et al. Diagnostic value of serum heparin binding protein, blood lactic acid combined with hs-CRP in sepsis and its relationship with prognosis [J]. Evid Based Complement Alternat Med, 2021, 2021: 5023733.
6
Neumann A. Rapid release of sepsis markers heparin-binding protein and calprotectin triggered by anaerobic cocci poses an underestimated threat [J]. Anaerobe, 2022, 75: 102584.
7
Katsaros K, Renieris G, Safarika A, et al. Heparin binding protein for the early diagnosis and prognosis of sepsis in the emergency department: the prompt multicenter study [J]. Shock, 2022, 57(4): 518-525.
8
Shafer WM, Martin LE, Spitznagel JK. Cationic antimicrobial proteins isolated from human neutrophil granulocytes in the presence of diisopropyl fluorophosphate [J]. Infect Immun, 1984, 45(1): 29-35.
9
Flodgaard H, Ostergaard E, Bayne S, et al. Covalent structure of two novel neutrophile leucocyte-derived proteins of porcine and human origin. Neutrophile elastase homologues with strong monocyte and fibroblast chemotactic activities [J]. Eur J Biochem, 1991, 197(2): 535-547.
10
Pohl J, Pereira HA, Martin NM, et al. Amino acid sequence of CAP37, a human neutrophil granule-derived antibacterial and monocyte-specific chemotactic glycoprotein structurally similar to neutrophil elastase [J]. FEBS Lett, 1990, 272(1-2): 200-204.
11
Campanelli D, Detmers PA, Nathan CF, et al. Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties [J]. J Clin Invest, 1990, 85(3): 904-915.
12
Neurath H. Evolution of proteolytic enzymes [J]. Science, 1984, 224(4647): 350-357.
13
Brandt K, Lundell K, Brismar K. Neutrophil-derived azurocidin cleaves insulin-like growth factor-binding protein-1, -2 and -4 [J]. Growth Horm IGF Res, 2011, 21(3): 167-173.
14
Schou M, Djurup R, Norris K, et al. Identifying the functional part of heparin-binding protein (HBP) as a monocyte stimulator and the novel role of monocytes as HBP producers [J]. Innate Immun, 2011, 17(1): 60-69.
15
Chertov O, Michiel DF, Xu L, et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils [J]. J Biol Chem, 1996, 271(6): 2935-2940.
16
Wu YL, Yo CH, Hsu WT, et al. Accuracy of heparin-binding protein in diagnosing sepsis: a systematic review and meta-analysis [J]. Crit Care Med, 2021, 49(1): e80-e90.
17
Skondra D, Noda K, Almulki L, et al. Characterization of azurocidin as a permeability factor in the retina: involvement in VEGF-induced and early diabetic blood-retinal barrier breakdown [J]. Invest Ophthalmol Vis Sci, 2008, 49(2): 726-731.
18
Bentzer P, Fisher J, Kong HJ, et al. Heparin-binding protein is important for vascular leak in sepsis [J]. Intensive Care Med Exp, 2016, 4(1): 33.
19
Gautam N, Olofsson AM, Herwald H, et al. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability [J]. Nat Med, 2001, 7(10): 1123-1127.
20
Raghu H, Lepus CM, Wang Q, et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis [J]. Ann Rheum Dis, 2017, 76(5): 914-922.
21
Chang M, Guo F, Zhou Z, et al. HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells [J]. Cell Signal, 2018, 43: 85-94.
22
Heinzelmann M, Kim E, Hofmeister A, et al. Heparin binding protein (CAP37) differentially modulates endotoxin-induced cytokine production [J]. Int J Surg Investig, 2001, 2(6): 457-466.
23
Soehnlein O, Weber C, Lindbom L. Neutrophil granule proteins tune monocytic cell function [J]. Trends Immunol, 2009, 30(11): 538-546.
24
Honore PM, De Bels D, Barreto Gutierrez L, et al. Heparin-binding protein in sepsis: player predictor positioning? [J] Ann Intensive Care, 2019, 9(1): 71.
25
Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis [J]. N Engl J Med, 2003, 348(2): 138-150.
26
Dou QL, Liu J, Zhang W, et al. Dynamic changes in heparin-binding protein as a prognostic biomarker for 30-day mortality in sepsis patients in the intensive care unit [J]. Sci Rep, 2022, 12(1): 10751.
27
Sanaei Dashti A, Alizadeh S, Karimi A, et al. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis: A cross-sectional study [J]. Medicine (Baltimore), 2017, 96(35): e7637.
28
Bisaria S, Terrigno V, Hunter K, et al. Association of elevated levels of inflammatory marker high-sensitivity C-reactive protein and hypertension [J]. J Prim Care Community Health, 2020, 11: 2150132720984426
29
中国严重脓毒症/脓毒性休克治疗指南(2014) [J]. 中华内科杂志, 2015, 54(6): 557-581.
30
Halldorsdottir HD, Eriksson J, Persson BP, et al. Heparin-binding protein as a biomarker of post-injury sepsis in trauma patients [J]. Acta Anaesthesiol Scand, 2018, 62(7): 962-973.
31
Zhou Y, Liu Z, Huang J, et al. Usefulness of the heparin-binding protein level to diagnose sepsis and septic shock according to Sepsis-3 compared with procalcitonin and C reactive protein: a prospective cohort study in China [J]. BMJ Open, 2019, 9(4): e026527.
32
Linder A, Christensson B, Herwald H, et al. Heparin-binding protein: an early marker of circulatory failure in sepsis. Clin Infect Dis. 2009 Oct 1; 49(7): 1044-50.
33
Linder A, Åkesson P, Inghammar M, et al. Elevated plasma levels of heparin-binding protein in intensive care unit patients with severe sepsis and septic shock [J]. Crit Care, 2012, 16(3): R90.
34
Kahn F, Tverring J, Mellhammar L, et al. Heparin-binding protein as a prognostic biomarker of sepsis and disease severity at the emergency department [J]. Shock, 2019, 52(6): e135-e145.
35
Linder A, Akesson P, Brink M, et al. Heparin-binding protein: a diagnostic marker of acute bacterial meningitis [J]. Crit Care Med, 2011, 39(4): 812-817.
36
Kong Y, Ye Y, Ma J, et al. Accuracy of heparin-binding protein for the diagnosis of nosocomial meningitis and ventriculitis [J]. Crit Care, 2022, 26(1): 56.
37
Kjölvmark C, Påhlman LI, Åkesson P, et al. Heparin-binding protein: a diagnostic biomarker of urinary tract infection in adults [J]. Open Forum Infect Dis, 2014 Apr 23; 1(1): ofu004.
38
Janssen van Doorn K, Spapen H, Geers C, et al. Sepsis-related acute kidney injury: a protective effect of drotrecogin alpha (activated) treatment? [J] Acta Anaesthesiol Scand, 2008, 52(9): 1259-1264.
39
Aksoy Y, Yapanoglu T, Aksou H, et al. The effect of dehydroepiandrosterone on renal ischemia-reperfusion-induced oxidative stress in rabbits [J]. Urol Res, 2004, 32(2): 93-96.
40
Fisher J, Linder A, Bentzer P, et al. Is heparin-binding protein inhibition a mechanism of albumin's efficacy in human septic shock? [J]. Crit Care Med, 2018, 46(5): e364-e374.
41
Tverring J, Vaara ST, Fisher J, et al. Heparin-binding protein (HBP) improves prediction of sepsis-related acute kidney injury [J]. Ann Intensive Care, 2017, 7(1): 105.
42
Pajenda S, Figurek A, Wagner L, et al. Heparin-binding protein as a novel biomarker for sepsis-related acute kidney injury [J]. Peer J, 2020, 8: e10122.
43
Fisher J, Russell JA, Bentzer P, et al. Heparin-binding protein (HBP): a causative marker and potential target for heparin treatment of human sepsis-induced acute kidney injury [J]. Shock, 2017, 48(3): 313-320.
44
Xing L, Zhongqian L, Chunmei S, et al. Activation of M1 macrophages in sepsis-induced acute kidney injury in response to heparin-binding protein [J]. PLoS One, 2018, 13(5): e0196423.
45
Guo R, Li Y, Han M, et al. Emodin attenuates acute lung injury in Cecal-ligation and puncture rats [J]. Int Immunopharmacol, 2020, 85: 106626.
46
Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis [J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370.
47
Huang X, Hu H, Sun T, et al. Plasma endothelial glycocalyx components as a potential biomarker for predicting the development of disseminated intravascular coagulation in patients with sepsis [J]. J Intensive Care Med, 2021, 36(11): 1286-1295.
48
Bellingan GJ. The pulmonary physician in critical care * 6: The pathogenesis of ALI/ARDS [J]. Thorax, 2002, 57(6): 540-546.
49
Tydén J, Herwald H, Sjöberg F, et al. Increased plasma levels of heparin-binding protein on admission to intensive care are associated with respiratory and circulatory failure [J]. PLoS One, 2016, 11(3): e0152035.
50
Lin Q, Shen J, Shen L, et al. Increased plasma levels of heparin-binding protein in patients with acute respiratory distress syndrome [J]. Crit Care, 2013, 17(4): R155.
51
Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: a case report [J]. Int J Infect Dis, 2020, 93: 297-299.
52
Montali F, Palmieri G, Casali L, et al. Rapidly fatal outcome of Covid-19 after successful emergency surgery during pandemic outbreak in Northern Italy [J]. Int J Surg Case Rep, 2020, 73: 9-12.
53
Bos JM, Hebl VB, Oberg AL, et al. Marked Up-Regulation of ACE2 in hearts of patients with obstructive hypertrophic cardiomyopathy: implications for SARS-CoV-2-mediated COVID-19 [J]. Mayo Clin Proc, 2020, 95(7): 1354-1368.
54
Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges [J]. Lancet Gastroenterol Hepatol, 2020, 5(5): 428-430.
55
Agrati C, Sacchi A, Bordoni V, et al. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19) [J]. Cell Death Differ, 2020, 27(11): 3196-3207.
56
Saridaki M, Metallidis S, Grigoropoulou S, et al. Integration of heparin-binding protein and interleukin-6 in the early prediction of respiratory failure and mortality in pneumonia by SARS-CoV-2 (COVID-19) [J]. Eur J Clin Microbiol Infect Dis, 2021, 40(7): 1405-1412.
57
Mellhammar L, Thelaus L, Elén S, et al. Heparin binding protein in severe COVID-19-A prospective observational cohort study [J]. PLoS One, 2021, 6, 16(4): e0249570.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[4] 赖乾德, 吕相琴, 蔺洋, 刘媛梅, 赵春艳, 李琦. 肝素结合蛋白对慢性阻塞性肺疾病预后预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 613-616.
[5] 甘志新, 胡雍军, 肖晶, 胡明冬. 降钙素原在脓毒血症与肺部感染中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 663-666.
[6] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[7] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[8] 张晓青, 唐雯. 基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 213-218.
[9] 潘冬生, 梁国标. 颅脑创伤治疗的最新进展与未来趋势[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 193-197.
[10] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[11] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[12] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[13] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[14] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[15] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?