切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 487 -490. doi: 10.3877/cma.j.issn.1674-0785.2023.04.021

综述

肝素结合蛋白在脓毒症中的应用及研究进展
蔡荇, 郑瑞强()   
  1. 225001 江苏扬州,江苏省苏北人民医院重症医学科
  • 收稿日期:2022-03-22 出版日期:2023-04-15
  • 通信作者: 郑瑞强

Progress in application of heparin-binding protein in sepsis

Xing Cai, Ruiqiang Zheng()   

  1. Department of Critical Care Medicine, Northern Jiangsu People's Hospital, Yangzhou 225001, China
  • Received:2022-03-22 Published:2023-04-15
  • Corresponding author: Ruiqiang Zheng
引用本文:

蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.

Xing Cai, Ruiqiang Zheng. Progress in application of heparin-binding protein in sepsis[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(04): 487-490.

肝素结合蛋白(HBP)是中性粒细胞受到外界刺激后释放产生的颗粒蛋白,在增加血管内皮通透性、趋化特性及调节炎症反应方面起着至关重要的作用。近年来,随着对HBP研究的逐渐深入,发现HBP可作为诊断脓毒症的早期生物标志物,并证实HBP可预测脓毒症患者疾病严重程度并判断预后情况。本文就HBP在脓毒症中的临床价值进行综述。

Heparin-binding protein (HBP) is a kind of granule protein produced by neutrophils in response to external stimuli. It plays a crucial role in increasing vascular permeability, chemotaxis, and regulating inflammatory response In recent years, studies have found that HBP can be used as an early predictor of sepsis. In addition, it has been confirmed that HBP can be used to evaluate the disease severity and prognosis in sepsis patients. This review focuses on the clinical value of HBP in sepsis.

1
Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 775-787.
2
Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management [J]. BMJ, 2016, 353: i1585.
3
Linder A, Lee T, Fisher J, et al. Short-term organ dysfunction is associated with long-term (10-Yr) mortality of septic shock [J]. Crit Care Med, 2016, 44(8): e728-736.
4
Tapper H, Karlsson A, Mörgelin M, et al. Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles [J]. Blood, 2002, 99(5): 1785-1793.
5
Ma H, Liu H, Wu C, et al. Diagnostic value of serum heparin binding protein, blood lactic acid combined with hs-CRP in sepsis and its relationship with prognosis [J]. Evid Based Complement Alternat Med, 2021, 2021: 5023733.
6
Neumann A. Rapid release of sepsis markers heparin-binding protein and calprotectin triggered by anaerobic cocci poses an underestimated threat [J]. Anaerobe, 2022, 75: 102584.
7
Katsaros K, Renieris G, Safarika A, et al. Heparin binding protein for the early diagnosis and prognosis of sepsis in the emergency department: the prompt multicenter study [J]. Shock, 2022, 57(4): 518-525.
8
Shafer WM, Martin LE, Spitznagel JK. Cationic antimicrobial proteins isolated from human neutrophil granulocytes in the presence of diisopropyl fluorophosphate [J]. Infect Immun, 1984, 45(1): 29-35.
9
Flodgaard H, Ostergaard E, Bayne S, et al. Covalent structure of two novel neutrophile leucocyte-derived proteins of porcine and human origin. Neutrophile elastase homologues with strong monocyte and fibroblast chemotactic activities [J]. Eur J Biochem, 1991, 197(2): 535-547.
10
Pohl J, Pereira HA, Martin NM, et al. Amino acid sequence of CAP37, a human neutrophil granule-derived antibacterial and monocyte-specific chemotactic glycoprotein structurally similar to neutrophil elastase [J]. FEBS Lett, 1990, 272(1-2): 200-204.
11
Campanelli D, Detmers PA, Nathan CF, et al. Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties [J]. J Clin Invest, 1990, 85(3): 904-915.
12
Neurath H. Evolution of proteolytic enzymes [J]. Science, 1984, 224(4647): 350-357.
13
Brandt K, Lundell K, Brismar K. Neutrophil-derived azurocidin cleaves insulin-like growth factor-binding protein-1, -2 and -4 [J]. Growth Horm IGF Res, 2011, 21(3): 167-173.
14
Schou M, Djurup R, Norris K, et al. Identifying the functional part of heparin-binding protein (HBP) as a monocyte stimulator and the novel role of monocytes as HBP producers [J]. Innate Immun, 2011, 17(1): 60-69.
15
Chertov O, Michiel DF, Xu L, et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils [J]. J Biol Chem, 1996, 271(6): 2935-2940.
16
Wu YL, Yo CH, Hsu WT, et al. Accuracy of heparin-binding protein in diagnosing sepsis: a systematic review and meta-analysis [J]. Crit Care Med, 2021, 49(1): e80-e90.
17
Skondra D, Noda K, Almulki L, et al. Characterization of azurocidin as a permeability factor in the retina: involvement in VEGF-induced and early diabetic blood-retinal barrier breakdown [J]. Invest Ophthalmol Vis Sci, 2008, 49(2): 726-731.
18
Bentzer P, Fisher J, Kong HJ, et al. Heparin-binding protein is important for vascular leak in sepsis [J]. Intensive Care Med Exp, 2016, 4(1): 33.
19
Gautam N, Olofsson AM, Herwald H, et al. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability [J]. Nat Med, 2001, 7(10): 1123-1127.
20
Raghu H, Lepus CM, Wang Q, et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis [J]. Ann Rheum Dis, 2017, 76(5): 914-922.
21
Chang M, Guo F, Zhou Z, et al. HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells [J]. Cell Signal, 2018, 43: 85-94.
22
Heinzelmann M, Kim E, Hofmeister A, et al. Heparin binding protein (CAP37) differentially modulates endotoxin-induced cytokine production [J]. Int J Surg Investig, 2001, 2(6): 457-466.
23
Soehnlein O, Weber C, Lindbom L. Neutrophil granule proteins tune monocytic cell function [J]. Trends Immunol, 2009, 30(11): 538-546.
24
Honore PM, De Bels D, Barreto Gutierrez L, et al. Heparin-binding protein in sepsis: player predictor positioning? [J] Ann Intensive Care, 2019, 9(1): 71.
25
Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis [J]. N Engl J Med, 2003, 348(2): 138-150.
26
Dou QL, Liu J, Zhang W, et al. Dynamic changes in heparin-binding protein as a prognostic biomarker for 30-day mortality in sepsis patients in the intensive care unit [J]. Sci Rep, 2022, 12(1): 10751.
27
Sanaei Dashti A, Alizadeh S, Karimi A, et al. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis: A cross-sectional study [J]. Medicine (Baltimore), 2017, 96(35): e7637.
28
Bisaria S, Terrigno V, Hunter K, et al. Association of elevated levels of inflammatory marker high-sensitivity C-reactive protein and hypertension [J]. J Prim Care Community Health, 2020, 11: 2150132720984426
29
中国严重脓毒症/脓毒性休克治疗指南(2014) [J]. 中华内科杂志, 2015, 54(6): 557-581.
30
Halldorsdottir HD, Eriksson J, Persson BP, et al. Heparin-binding protein as a biomarker of post-injury sepsis in trauma patients [J]. Acta Anaesthesiol Scand, 2018, 62(7): 962-973.
31
Zhou Y, Liu Z, Huang J, et al. Usefulness of the heparin-binding protein level to diagnose sepsis and septic shock according to Sepsis-3 compared with procalcitonin and C reactive protein: a prospective cohort study in China [J]. BMJ Open, 2019, 9(4): e026527.
32
Linder A, Christensson B, Herwald H, et al. Heparin-binding protein: an early marker of circulatory failure in sepsis. Clin Infect Dis. 2009 Oct 1; 49(7): 1044-50.
33
Linder A, Åkesson P, Inghammar M, et al. Elevated plasma levels of heparin-binding protein in intensive care unit patients with severe sepsis and septic shock [J]. Crit Care, 2012, 16(3): R90.
34
Kahn F, Tverring J, Mellhammar L, et al. Heparin-binding protein as a prognostic biomarker of sepsis and disease severity at the emergency department [J]. Shock, 2019, 52(6): e135-e145.
35
Linder A, Akesson P, Brink M, et al. Heparin-binding protein: a diagnostic marker of acute bacterial meningitis [J]. Crit Care Med, 2011, 39(4): 812-817.
36
Kong Y, Ye Y, Ma J, et al. Accuracy of heparin-binding protein for the diagnosis of nosocomial meningitis and ventriculitis [J]. Crit Care, 2022, 26(1): 56.
37
Kjölvmark C, Påhlman LI, Åkesson P, et al. Heparin-binding protein: a diagnostic biomarker of urinary tract infection in adults [J]. Open Forum Infect Dis, 2014 Apr 23; 1(1): ofu004.
38
Janssen van Doorn K, Spapen H, Geers C, et al. Sepsis-related acute kidney injury: a protective effect of drotrecogin alpha (activated) treatment? [J] Acta Anaesthesiol Scand, 2008, 52(9): 1259-1264.
39
Aksoy Y, Yapanoglu T, Aksou H, et al. The effect of dehydroepiandrosterone on renal ischemia-reperfusion-induced oxidative stress in rabbits [J]. Urol Res, 2004, 32(2): 93-96.
40
Fisher J, Linder A, Bentzer P, et al. Is heparin-binding protein inhibition a mechanism of albumin's efficacy in human septic shock? [J]. Crit Care Med, 2018, 46(5): e364-e374.
41
Tverring J, Vaara ST, Fisher J, et al. Heparin-binding protein (HBP) improves prediction of sepsis-related acute kidney injury [J]. Ann Intensive Care, 2017, 7(1): 105.
42
Pajenda S, Figurek A, Wagner L, et al. Heparin-binding protein as a novel biomarker for sepsis-related acute kidney injury [J]. Peer J, 2020, 8: e10122.
43
Fisher J, Russell JA, Bentzer P, et al. Heparin-binding protein (HBP): a causative marker and potential target for heparin treatment of human sepsis-induced acute kidney injury [J]. Shock, 2017, 48(3): 313-320.
44
Xing L, Zhongqian L, Chunmei S, et al. Activation of M1 macrophages in sepsis-induced acute kidney injury in response to heparin-binding protein [J]. PLoS One, 2018, 13(5): e0196423.
45
Guo R, Li Y, Han M, et al. Emodin attenuates acute lung injury in Cecal-ligation and puncture rats [J]. Int Immunopharmacol, 2020, 85: 106626.
46
Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis [J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370.
47
Huang X, Hu H, Sun T, et al. Plasma endothelial glycocalyx components as a potential biomarker for predicting the development of disseminated intravascular coagulation in patients with sepsis [J]. J Intensive Care Med, 2021, 36(11): 1286-1295.
48
Bellingan GJ. The pulmonary physician in critical care * 6: The pathogenesis of ALI/ARDS [J]. Thorax, 2002, 57(6): 540-546.
49
Tydén J, Herwald H, Sjöberg F, et al. Increased plasma levels of heparin-binding protein on admission to intensive care are associated with respiratory and circulatory failure [J]. PLoS One, 2016, 11(3): e0152035.
50
Lin Q, Shen J, Shen L, et al. Increased plasma levels of heparin-binding protein in patients with acute respiratory distress syndrome [J]. Crit Care, 2013, 17(4): R155.
51
Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: a case report [J]. Int J Infect Dis, 2020, 93: 297-299.
52
Montali F, Palmieri G, Casali L, et al. Rapidly fatal outcome of Covid-19 after successful emergency surgery during pandemic outbreak in Northern Italy [J]. Int J Surg Case Rep, 2020, 73: 9-12.
53
Bos JM, Hebl VB, Oberg AL, et al. Marked Up-Regulation of ACE2 in hearts of patients with obstructive hypertrophic cardiomyopathy: implications for SARS-CoV-2-mediated COVID-19 [J]. Mayo Clin Proc, 2020, 95(7): 1354-1368.
54
Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges [J]. Lancet Gastroenterol Hepatol, 2020, 5(5): 428-430.
55
Agrati C, Sacchi A, Bordoni V, et al. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19) [J]. Cell Death Differ, 2020, 27(11): 3196-3207.
56
Saridaki M, Metallidis S, Grigoropoulou S, et al. Integration of heparin-binding protein and interleukin-6 in the early prediction of respiratory failure and mortality in pneumonia by SARS-CoV-2 (COVID-19) [J]. Eur J Clin Microbiol Infect Dis, 2021, 40(7): 1405-1412.
57
Mellhammar L, Thelaus L, Elén S, et al. Heparin binding protein in severe COVID-19-A prospective observational cohort study [J]. PLoS One, 2021, 6, 16(4): e0249570.
[1] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[5] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[6] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[7] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[8] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[9] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[10] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[11] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[12] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[13] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要