切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (10) : 843 -847. doi: 10.3877/cma.j.issn.1674-0785.2020.10.019

所属专题: 文献

综述

mi-RNA调控自噬在癌症中的作用
裴向春1, 王志莲2,()   
  1. 1. 030000 太原,山西医科大学
    2. 030000 太原,山西医科大学第二医院妇产科
  • 收稿日期:2019-12-29 出版日期:2020-10-15
  • 通信作者: 王志莲
  • 基金资助:
    山西省卫生计生委科研课题(山西省卫生健康委员会201601046); 山西医科大学第二医院博士基金(201701-8)

Role of microRNAs in regulating autophagy in cancer

Xiangchun Pei1, Zhilian Wang2,()   

  1. 1. Shanxi Medical University, Taiyuan 030000, China
    2. Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan 030000, China
  • Received:2019-12-29 Published:2020-10-15
  • Corresponding author: Zhilian Wang
引用本文:

裴向春, 王志莲. mi-RNA调控自噬在癌症中的作用[J]. 中华临床医师杂志(电子版), 2020, 14(10): 843-847.

Xiangchun Pei, Zhilian Wang. Role of microRNAs in regulating autophagy in cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(10): 843-847.

自噬是通过溶酶体依赖性途径降解和再循环细胞溶质组分或细胞器的保守分解代谢过程,其负责长寿命蛋白质、蛋白质聚集体以及受损细胞器的降解以维持细胞稳态。因此,自噬的异常与许多疾病相关,包括阿尔茨海默病,帕金森病和癌症。根据目前的观点,自噬似乎在癌症形成的早期阶段充当肿瘤抑制剂,但在后期阶段,自噬可以促进肿瘤的生长、扩散。microRNA(miRNA)是内源性非编码小RNA,其通过沉默mRNA靶标来调节基因表达。在体细胞发育、造血、免疫、细胞增殖和死亡以及自噬过程中,miRNA失调表现出巨大的调节潜力。近年来大量的研究表明miRNA可通过调节靶向基因表达来调节细胞自噬进而有助于癌症形成,以及癌症的进展。在本综述中,将简要阐明miRNA对自噬的调控在癌症中的作用。

Autophagy is a conservative catabolic process in which solute components or organelles are degraded and recycled via lysosomal dependent pathways. It is responsible for the degradation of long-lived proteins, protein aggregates, and damaged organelles to maintain cell homeostasis. Thus, abnormalities in autophagy are associated with many diseases, including Alzheimer's disease, Parkinson's disease, and cancer. According to current views, autophagy appears to act as a tumor inhibitor in the early stages of cancer formation, but in the later stages, it promotes tumor growth and spread. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that regulate gene expression by silencing mRNA targets. MiRNA imbalance shows great regulatory potential in somatic cell development, hematopoiesis, immunity, cell proliferation and death, and autophagy. In recent years, a large number of studies have shown that miRNAs can regulate autophagy by regulating the expression of targeted genes, thus contributing to the formation and progression of cancer. In this review, we briefly discuss the role of miRNAs in regulation of autophagy in cancer.

1
Johnson JL. Elucidating the contributory role of microRNA to cardiovascular diseases (a review) [J]. Vascul Pharmacol, 2019, 114: 31-48.
2
Yin Q, Feng W, Shen X, et al. Regulatory effects of lncRNAs and miRNAs on autophagy in malignant tumorigenesis [J]. Biosci Rep, 2018, 38(5): BSR20180516.
3
Gozuacik D, Akkoc Y, Ozturk DG, et al. Autophagy-Regulating microRNAs and Cancer [J]. Front Oncol, 2017, 7: 65.
4
Nazio F, Bordi M, Cianfanelli V, et al. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications [J]. Cell Death Differ, 2019, 26(4): 690-702.
5
Condello M, Pellegrini E, Caraglia M, et al. Targeting autophagy to overcome human diseases [J]. Int J Mol Sci, 2019, 20(3): 725.
6
Goldsmith J, Levine B, Debnath J. Autophagy and cancer metabolism [J]. Methods Enzymol, 2014, 542: 25-57.
7
Folkerts H, Hilgendorf S, Vellenga E, et al. The multifaceted role of autophagy in cancer and the microenvironment [J]. Med Res Rev, 2019, 39(2): 517-560.
8
Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer [J]. Genes Dev, 2016, 30(17): 1913-1930.
9
Levine B, Yuan J. Autophagy in cell death: an innocent convict? [J]. J Clin Invest, 2005, 115(10): 2679-2688.
10
Guo JY, Chen HY, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis [J]. Genes Dev, 2011, 25(5): 460-470.
11
Wang J, Huang S, Tian R, et al. The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK [J]. Oncotarget, 2018, 9(18): 14413-14427.
12
Yun CW, Lee SH. The Roles of Autophagy in Cancer [J]. Int J Mol Sci, 2018, 19(11): 3466.
13
Wei J, Ma Z, Li Y, et al. miR-143 inhibits cell proliferation by targeting autophagy-related 2B in non-small cell lung cancer H1299 cells [J]. Mol Med Rep, 2015, 11(1): 571-576.
14
Gundara JS, Zhao J, Gill AJ, et al. Noncoding RNA blockade of autophagy is therapeutic in medullary thyroid cancer [J]. Cancer Med, 2015, 4(2): 174-182.
15
Zhai H, Song B, Xu X, et al. Inhibition of autophagy and tumor growth in colon cancer by miR-502 [J]. Oncogene, 2013, 32(12): 1570-1579.
16
Chen Y, Liersch R, Detmar M. The miR-290-295 cluster suppresses autophagic cell death of melanoma cells [J]. Sci Rep, 2012, 2: 808.
17
Taniguchi K, Sugito N, Kumazaki M, et al. microRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer [J]. Cancer Lett, 2015, 363(1): 17-27.
18
Gu H, Liu M, Ding C, et al. Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1 [J]. Cancer Med, 2016, 5(6): 1174-1182.
19
Ma Y, Yang HZ, Dong BJ, et al. Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia [J]. Oncotarget, 2014, 5(19): 9169-9182.
20
Chang Y, Yan W, He X, et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions [J]. Gastroenterology, 2012, 143(1): 177-187. e8.
21
Guo X, Xue H, Guo X, et al. miR224-3p inhibits hypoxia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells [J]. Oncotarget, 2015, 6(39): 41620-41637.
22
Mo J, Zhang D, Yang R. microRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1 [J]. Biosci Rep, 2016, 36(5): e00396.
23
Ramalinga M, Roy A, Srivastava A, et al. microRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence [J]. Oncotarget, 2015, 6(33): 34446-34457.
24
Guo J, Sang Y, Yin T, et al. miR-1273g-3p participates in acute glucose fluctuation-induced autophagy, dysfunction, and proliferation attenuation in human umbilical vein endothelial cells [J]. Am J Physiol Endocrinol Metab, 2016, 310(9): E734-43.
25
Zhai H, Fesler A, Ba Y, et al. Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy [J]. Oncotarget, 2015, 6(23): 19735-19746.
26
Guo S, Bai R, Liu W, et al. miR-22 inhibits osteosarcoma cell proliferation and migration by targeting HMGB1 and inhibiting HMGB1-mediated autophagy [J]. Tumour Biol, 2014, 35(7): 7025-7034.
27
Bhattacharya A, Schmitz U, Raatz Y, et al. miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy [J]. Oncotarget, 2015, 6(5): 2966-2980.
28
Hu L, Wang H, Huang L, et al. Crosstalk between autophagy and intracellular radiation response (Review) [J]. Int J Oncol, 2016, 49(6): 2217-2226.
29
Wang P, Zhang J, Zhang L, et al. microRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells [J]. Gastroenterology, 2013, 145(5): 1133-1143.
30
Zhang X, Shi H, Lin S, et al. microRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy [J]. Oncol Rep, 2015, 34(3): 1557-1564.
31
Comincini S, Allavena G, Palumbo S, et al. microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells [J]. Cancer Biol Ther, 2013, 14(7): 574-586.
32
Xu Y, An Y, Wang Y, et al. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells [J]. Oncol Rep, 2013, 29(5): 2019-2024.
33
Xu N, Zhang J, Shen C, et al. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell [J]. Biochem Biophys Res Commun, 2012, 423(4): 826-831.
34
Chatterjee A, Chattopadhyay D, Chakrabarti G. miR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis [J]. Cell Signal, 2015, 27(2): 189-203.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[4] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[5] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[6] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[7] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[8] 钟文涛, 赵阳, 沈晓菲, 杜峻峰. 自噬在脓毒症中的作用及靶向治疗研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 221-225.
[9] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[10] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[11] 孙翀, 徐成臣, 王辉, 谢应海, 王琦. 蛋白磷酸酶1G在肝细胞癌中的表达及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 449-453.
[12] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[13] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[14] 李民昌, 马长林. 自噬调控的细胞铁死亡及在肿瘤中影响的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 140-144.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要