1 |
Xue R, Gui D, Zheng L, et al. Mechanistic insight and management of diabetic nephropathy: recent progress and future perspective [J]. J Diabetes Res, 2017, 2017: 1839809.
|
2 |
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China [J]. Engl J Med, 2016, 375(9): 905-906.
|
3 |
Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets [J]. Ann N Y Acad Sci, 2015, 1353(1): 72-88.
|
4 |
Zhang Y, Sun X, Icli B, et al. Emerging roles for MicroRNAs in diabetic microvascular disease: novel targets for therapy [J]. Endocr Rev, 2017, 38(2): 145-168.
|
5 |
Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75: 843-854.
|
6 |
Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature, 2000, 403(6772): 901-906.
|
7 |
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases [J]. Nat Rev Drug Discov, 2017, 16(3): 203-222.
|
8 |
Mori MA, Ludwig RG, Garcia-Martin R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease [J]. Cell Metab, 2019, 30(4): 656-673.
|
9 |
Wu L, Wang Q, Guo F, et al. MicroRNA-27a induces mesangial cell injury by targeting of PPARγ, and its in vivo knockdown prevents progression of diabetic nephropathy [J]. Sci Rep, 2016, 6(1): 1-12.
|
10 |
Yu FN, Hu ML, Wang XF, et al. Effects of microRNA-370 on mesangial cell proliferation and extracellular matrix accumulation by binding to canopy 1 in a rat model of diabetic nephropathy [J]. J Cell Physiol, 2019, 234(5): 6898-6907.
|
11 |
Wang Y, Zheng ZJ, Jia YJ, et al. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease [J]. J Transl Med, 2018, 16(1): 146-154.
|
12 |
Huang YF, Zhang Y, Liu CX, et al. microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme 2 [J]. Eur Rev Med Pharmacol Sci, 2016, 20(19): 4055.
|
13 |
Huang YF, Zhang Y, Liu CX, et al. microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme2 [J]. Eur Rev Med Pharmacol Sci, 2016, 20(19): 4055-4062.
|
14 |
Li D, Lu Z, Jia J, et al. Changes in microRNAs associated with podocytic adhesion damage under mechanical stress [J]. J Renin Angiotensin Aldosterone Syst, 2013, 14(2): 97-102.
|
15 |
Milas O, Gadalean F, Vlad A, et al. Deregulated profiles of urinary microRNAs may explain podocyte injury and proximal tubule dysfunction in normoalbuminuric patients with type 2 diabetes mellitus [J]. J Investig Med, 2018, 66(4): 747-754.
|
16 |
尹萌萌, 彭晖, 杨婕纶, 等. 微小RNA-124通过抑制rho相关蛋白激酶1激活减轻高糖导致的肾小球内皮细胞损伤 [J]. 中华肾脏病杂志, 2017, 33(1): 30-36.
|
17 |
Wang JY, Gao YB, Zhang N, et al. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy [J]. Mol Cell Endocrinol, 2014, 392(1-2): 163-172.
|
18 |
Mcclelland AD, Herman-Edelstein M, Komers R, et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7 [J]. Clin Sci (Lond), 2015, 129(12): 1237-1249.
|
19 |
Kölling M, Kaucsar T, Schauerte C, et al. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice [J]. Mol Ther, 2017, 25(1): 165-180.
|
20 |
Pishavar E, Behravan J. miR-126 as a therapeutic agent for diabetes mellitus [J]. Curr Pharm Des, 2017, 23(22): 3309-3314.
|
21 |
Fourdinier O, Schepers E, Meuth ML, et al. Serum levels of miR-126 and miR-223 and outcomes in chronic kidney disease patients [J]. Sci Rep, 2019, 9(1): 4477.
|
22 |
Cao DW, Jiang CM, Wan C, et al. Upregulation of MiR-126 delays the senescence of human glomerular mesangial cells induced by high glucose via telomere-p53-p21-Rb signaling pathway [J]. Curr Med Sci, 2018, 38(5): 758-764.
|
23 |
Barutta F, Bruno G, Matullo G, et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB prospective complications study [J]. Acta Diabetologica, 2016, 54(2): 133-139.
|
24 |
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review) [J]. Int J Oncol, 2019, 55(4): 775-788.
|
25 |
方晓琳, 杨海波, 李宪, 等. HMGA2基因调控Notch信号通路对高糖诱导的肾小管上皮细胞凋亡的影响 [J]. 中国病理生理杂志, 2019, 35(7): 1261-1267.
|
26 |
Liu H, Wang X, Liu S, et al. Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy [J]. Int J Biochem Cell Biol, 2016, 70: 149-160.
|
27 |
Lv N, Li C, Liu X, et al. miR-34b alleviates high glucose-induced inflammation and apoptosis in human HK-2 cells via IL-6R/JAK2/STAT3 signaling pathway [J]. Med Sci Monit, 2019, 25: 8142-8151.
|
28 |
Dasare AP, Gondaliya P, Srivastava A, et al. A therapeutic approach towards microRNA29 family in vascular diabetic complications: A boon or curse? [J]. J Diabetes Metab Disord, 2019, 18(1): 243-254.
|
29 |
Lin CL, Lee PH, Hsu YC, et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction [J]. J Am Soc Nephrol, 2014, 25(8): 1698-1709.
|
30 |
李凤丽. HDAC4对FOXO1的去乙酰化在糖尿病肾病发病机制中的作用 [D].济南: 山东大学, 2015.
|
31 |
Bai X, Geng J, Zhou Z, et al. MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy [J]. Hong Kong Med J, 2016, 6(1): 1-16.
|
32 |
Lv C, Zhou YH, Wu C, et al. The changes in miR-130b levels in human serum and the correlation with the severity of diabetic nephropathy [J]. Diabetes Metab Res Rev, 2015, 31(7): 717-724.
|
33 |
王家芷, 王成, 寿岚. 血清miR-130b与糖尿病肾病患者肾脏损伤及远期预后的相关性研究 [J]. 中国中西医结合肾病杂志, 2019, 20(4): 316-318.
|
34 |
Motawi TK, Shehata NI, ElNokeety MM, et al. Potential serum biomarkers for early detection of diabetic nephropathy [J]. Diabetes Res Clin Pract, 2018, 136: 150-158.
|
35 |
Ma Y, Shi J, Wang F, et al. MiR-130b increases fibrosis of HMC cells by regulating the TGF-β1 pathway in diabetic nephropathy [J]. J Cell Biochem, 2019, 120(3): 4044-4056.
|
36 |
Leuenberger N, Robinson N, Saugy M. Circulating miRNAs: a new generation of anti-doping biomarkers [J]. Anal Bioanal Chem, 2013, 405(30): 9617-9623.
|