切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 133 -138. doi: 10.3877/cma.j.issn.1674-0785.2021.02.010

所属专题: 文献

综述

microRNAs调控糖尿病肾病发展的研究进展
毛玉熠1, 李格菲1, 韩睿1,()   
  1. 1. 650032 昆明,昆明医科大学第一附属医院内分泌二科
  • 收稿日期:2020-08-30 出版日期:2021-02-15
  • 通信作者: 韩睿
  • 基金资助:
    国家自然科学基金(81960157); 云南省卫生科技计划项目(2018NS0123); 云南省中青年学术及技术带头人后备人才资助项目(2017HB045)

Progress in research of microRNAs regulating development of diabetic kidney disease

Yuyi Mao1, Gefei Li1, Rui. Han1,()   

  1. 1. Department of Endocrinology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
  • Received:2020-08-30 Published:2021-02-15
  • Corresponding author: Rui. Han
引用本文:

毛玉熠, 李格菲, 韩睿. microRNAs调控糖尿病肾病发展的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(02): 133-138.

Yuyi Mao, Gefei Li, Rui. Han. Progress in research of microRNAs regulating development of diabetic kidney disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(02): 133-138.

随着糖尿病发病率逐年上升,其并发症也愈发受到关注,其中糖尿病肾病(DKD)是由糖尿病引起的慢性肾脏疾病,发病机制复杂,目前暂无特异性的有效治疗手段,且预后差。microRNAs(miRNAs)是近年来新发现的非编码单链小RNA,可通过调控靶基因影响DKD肾组织的病理特征,调节DKD的发生、发展机制。就目前研究来看,某种特异性的miRNA将有望成为早期诊断DKD的分子标志物,且可能成为DKD潜在的治疗靶点。故本文就miRNAs参与调控糖尿病肾病发生、发展的相关研究做一综述。

As the incidence of diabetes has increased year by year, its complications have also received increasing attention. Diabetic kidney disease (DKD) is a chronic kidney disease caused by diabetes and its pathogenesis is complicated. Currently, there is no specific and effective treatment for DKD, and as a result, its prognosis is poor. MicroRNAs (miRNAs) are non-coding single-stranded small RNAs discovered in recent years, which can affect the pathological characteristics of kidney tissue by regulating target genes, and regulate the occurrence and development of DKD. Based on current research, certain specific miRNAs are expected to become diagnostic biomarkers and therapeutic targets for DKD. Therefore, this article reviews the related research on miRNAs involved in the regulation of the occurrence and development of DKD.

表1 可能参与糖尿病肾病发生发展的miRNAs
1
Xue R, Gui D, Zheng L, et al. Mechanistic insight and management of diabetic nephropathy: recent progress and future perspective [J]. J Diabetes Res, 2017, 2017: 1839809.
2
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China [J]. Engl J Med, 2016, 375(9): 905-906.
3
Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets [J]. Ann N Y Acad Sci, 2015, 1353(1): 72-88.
4
Zhang Y, Sun X, Icli B, et al. Emerging roles for MicroRNAs in diabetic microvascular disease: novel targets for therapy [J]. Endocr Rev, 2017, 38(2): 145-168.
5
Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75: 843-854.
6
Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature, 2000, 403(6772): 901-906.
7
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases [J]. Nat Rev Drug Discov, 2017, 16(3): 203-222.
8
Mori MA, Ludwig RG, Garcia-Martin R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease [J]. Cell Metab, 2019, 30(4): 656-673.
9
Wu L, Wang Q, Guo F, et al. MicroRNA-27a induces mesangial cell injury by targeting of PPARγ, and its in vivo knockdown prevents progression of diabetic nephropathy [J]. Sci Rep, 2016, 6(1): 1-12.
10
Yu FN, Hu ML, Wang XF, et al. Effects of microRNA-370 on mesangial cell proliferation and extracellular matrix accumulation by binding to canopy 1 in a rat model of diabetic nephropathy [J]. J Cell Physiol, 2019, 234(5): 6898-6907.
11
Wang Y, Zheng ZJ, Jia YJ, et al. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease [J]. J Transl Med, 2018, 16(1): 146-154.
12
Huang YF, Zhang Y, Liu CX, et al. microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme 2 [J]. Eur Rev Med Pharmacol Sci, 2016, 20(19): 4055.
13
Huang YF, Zhang Y, Liu CX, et al. microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme2 [J]. Eur Rev Med Pharmacol Sci, 2016, 20(19): 4055-4062.
14
Li D, Lu Z, Jia J, et al. Changes in microRNAs associated with podocytic adhesion damage under mechanical stress [J]. J Renin Angiotensin Aldosterone Syst, 2013, 14(2): 97-102.
15
Milas O, Gadalean F, Vlad A, et al. Deregulated profiles of urinary microRNAs may explain podocyte injury and proximal tubule dysfunction in normoalbuminuric patients with type 2 diabetes mellitus [J]. J Investig Med, 2018, 66(4): 747-754.
16
尹萌萌, 彭晖, 杨婕纶, 等. 微小RNA-124通过抑制rho相关蛋白激酶1激活减轻高糖导致的肾小球内皮细胞损伤 [J]. 中华肾脏病杂志, 2017, 33(1): 30-36.
17
Wang JY, Gao YB, Zhang N, et al. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy [J]. Mol Cell Endocrinol, 2014, 392(1-2): 163-172.
18
Mcclelland AD, Herman-Edelstein M, Komers R, et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7 [J]. Clin Sci (Lond), 2015, 129(12): 1237-1249.
19
Kölling M, Kaucsar T, Schauerte C, et al. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice [J]. Mol Ther, 2017, 25(1): 165-180.
20
Pishavar E, Behravan J. miR-126 as a therapeutic agent for diabetes mellitus [J]. Curr Pharm Des, 2017, 23(22): 3309-3314.
21
Fourdinier O, Schepers E, Meuth ML, et al. Serum levels of miR-126 and miR-223 and outcomes in chronic kidney disease patients [J]. Sci Rep, 2019, 9(1): 4477.
22
Cao DW, Jiang CM, Wan C, et al. Upregulation of MiR-126 delays the senescence of human glomerular mesangial cells induced by high glucose via telomere-p53-p21-Rb signaling pathway [J]. Curr Med Sci, 2018, 38(5): 758-764.
23
Barutta F, Bruno G, Matullo G, et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB prospective complications study [J]. Acta Diabetologica, 2016, 54(2): 133-139.
24
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review) [J]. Int J Oncol, 2019, 55(4): 775-788.
25
方晓琳, 杨海波, 李宪, 等. HMGA2基因调控Notch信号通路对高糖诱导的肾小管上皮细胞凋亡的影响 [J]. 中国病理生理杂志, 2019, 35(7): 1261-1267.
26
Liu H, Wang X, Liu S, et al. Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy [J]. Int J Biochem Cell Biol, 2016, 70: 149-160.
27
Lv N, Li C, Liu X, et al. miR-34b alleviates high glucose-induced inflammation and apoptosis in human HK-2 cells via IL-6R/JAK2/STAT3 signaling pathway [J]. Med Sci Monit, 2019, 25: 8142-8151.
28
Dasare AP, Gondaliya P, Srivastava A, et al. A therapeutic approach towards microRNA29 family in vascular diabetic complications: A boon or curse? [J]. J Diabetes Metab Disord, 2019, 18(1): 243-254.
29
Lin CL, Lee PH, Hsu YC, et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction [J]. J Am Soc Nephrol, 2014, 25(8): 1698-1709.
30
李凤丽. HDAC4对FOXO1的去乙酰化在糖尿病肾病发病机制中的作用 [D].济南: 山东大学, 2015.
31
Bai X, Geng J, Zhou Z, et al. MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy [J]. Hong Kong Med J, 2016, 6(1): 1-16.
32
Lv C, Zhou YH, Wu C, et al. The changes in miR-130b levels in human serum and the correlation with the severity of diabetic nephropathy [J]. Diabetes Metab Res Rev, 2015, 31(7): 717-724.
33
王家芷, 王成, 寿岚. 血清miR-130b与糖尿病肾病患者肾脏损伤及远期预后的相关性研究 [J]. 中国中西医结合肾病杂志, 2019, 20(4): 316-318.
34
Motawi TK, Shehata NI, ElNokeety MM, et al. Potential serum biomarkers for early detection of diabetic nephropathy [J]. Diabetes Res Clin Pract, 2018, 136: 150-158.
35
Ma Y, Shi J, Wang F, et al. MiR-130b increases fibrosis of HMC cells by regulating the TGF-β1 pathway in diabetic nephropathy [J]. J Cell Biochem, 2019, 120(3): 4044-4056.
36
Leuenberger N, Robinson N, Saugy M. Circulating miRNAs: a new generation of anti-doping biomarkers [J]. Anal Bioanal Chem, 2013, 405(30): 9617-9623.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[3] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[4] 黄嘉明, 段红霞, 赖逾鹏, 王大吉, 刘兴娇, 沈鑫, 王梅英. 狼疮性肾炎慢性化中肾脏固有细胞的间充质化研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 347-352.
[5] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[6] 雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.
[7] 王明. 糖尿病肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(05): 300-300.
[8] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[9] 李文捷, 卢弘. 幼年特发性关节炎相关葡萄膜炎的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 40-44.
[10] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[11] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[12] 朱艺平, 陈一平, 赵艳英, 陆玮玮, 牙侯军, 苏复霞. 二十味沉香丸调控糖尿病肾病大鼠肠道菌群益生菌构成的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 572-578.
[13] 王敏, 张妍, 王盈熹, 赵龙, 夏书月. 外泌体在慢性阻塞性肺疾病中的作用[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 45-51.
[14] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[15] 郑茂凤, 时晶, 李婷, 徐筱青, 田金洲. 血管性帕金森综合征的临床特征及诊治研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 347-350.
阅读次数
全文


摘要