1 |
Zheng RS, Chen R, Han BF, et al. [Cancer incidence and mortality in China, 2022] [J]. Zhonghua Zhong Liu Za Zhi, 2024, 46(3) 221-231.
|
2 |
李越, 周祺祺. 赵洪猛. 初诊Ⅳ期乳腺癌的外科治疗进展 [J/OL].中华临床医师杂志(电子版), 2023, 17(10): 1097-1101.
|
3 |
Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria [J]. Science,2020, 368(6494): 973-980.
|
4 |
Xuan C, Shamonki JM, Chung A, et al. Microbial dysbiosis is associated with human breast cancer [J]. PLoS One, 2014, 9(1):e83744.
|
5 |
Sender R, Fuchs S, Milo R. Are we really vastly outnumbered?Revisiting the ratio of bacterial to host cells in humans [J]. Cell, 2016,164(3): 337-340.
|
6 |
Bernardo G, Le Noci V, Di Modica M, et al. The emerging role of the microbiota in Breast cancer progression [J]. Cells, 2023, 12(15): 1945.
|
7 |
Xie Y, Xie F, Zhou X, et al. Microbiota in tumors: from understanding to application [J]. Adv Sci (Weinh), 2022, 9(21): e2200470.
|
8 |
Li J, Zhang Y, Cai Y, et al. Multi-omics analysis elucidates the relationship between intratumor microbiome and host immune heterogeneity in breast cancer [J]. Microbiol Spectr, 2024, 12(4):e0410423.
|
9 |
Hieken TJ, Chen J, Hoskin TL, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease [J]. Sci Rep, 2016, 6: 30751.
|
10 |
Costantini L, Magno S, Albanese D, et al. Characterization of human breast tissue microbiota from core needle biopsies through the analysis of multi hypervariable 16S-rRNA gene regions [J]. Sci Rep, 2018,8(1): 16893.
|
11 |
Urbaniak C, Gloor GB, Brackstone M, et al. The microbiota of breast tissue and its association with breast cancer [J]. Appl Environ Microbiol, 2016, 82(16): 5039-5048.
|
12 |
王清华, 李溯, 杨蕊, 等. 基于基因测序技术分析乳腺癌中微生物菌群的研究进展 [J]. 南京医科大学学报(自然科学版), 2024,44(7): 992-1001.
|
13 |
Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer [J]. Cell, 2022,185(8): 1356-1372.e26.
|
14 |
Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach [J]. Nature, 2020,579(7800): 567-574.
|
15 |
Banerjee S, Tian T, Wei Z, et al. Distinct microbial signatures associated with different breast cancer types [J]. Front Microbiol,2018, 9: 951.
|
16 |
Banerjee S, Wei Z, Tan F, et al. Distinct microbiological signatures associated with triple negative breast cancer [J]. Sci Rep, 2015, 5: 15162.
|
17 |
Banerjee S, Wei Z, Tian T, et al. Prognostic correlations with the microbiome of breast cancer subtypes [J]. Cell Death & Disease,2021, 12(9).
|
18 |
Cuevas-Ramos G, Petit CR, Marcq I, et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells [J]. Proc Natl Acad Sci U S A, 2010, 107(25): 11537-42.
|
19 |
Herrera-Quintana L, Vázquez-Lorente H, Plaza-Diaz J, et al. Breast Cancer: Extracellular Matrix and Microbiome Interactions [J].International Journal of Molecular Sciences, 2024, 25(13).
|
20 |
Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression [J]. Nat Commun, 2020, 11(1): 3259.
|
21 |
Parida S, Wu S, Siddharth S, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes [J]. cancer discov,2021, 11(5): 1138-1157.
|
22 |
Giallourou N, Urbaniak C, Puebla-Barragan S, et al. Characterizing the breast cancer lipidome and its interaction with the tissue microbiota [J].Commun Biol, 2021, 4(1): 1229.
|
23 |
Wu R, Yu I, Tokumaru Y, et al. Elevated bile acid metabolism and microbiome are associated with suppressed cell proliferation and better survival in breast cancer [J]. Am J Cancer Res, 2022, 12(11): 5271-5285.
|
24 |
Kovács P, Csonka T, Kovács T, et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer [J]. Cancers(Basel), 2019, 11(9).
|
25 |
Bernardo G, Le Noci V, Ottaviano E, et al. Reduction of Staphylococcus epidermidis in the mammary tumor microbiota induces antitumor immunity and decreases breast cancer aggressiveness [J].Cancer Lett, 2023, 555: 216041.
|
26 |
Magrini E, Di Marco S, Mapelli SN, et al. Complement activation promoted by the lectin pathway mediates C3aR-dependent sarcoma progression and immunosuppression [J]. Nat Cancer, 2021, 2(2): 218-232.
|
27 |
Wang H, Rong X, Zhao G, et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triplenegative breast cancer [J]. Cell Metab, 2022, 34(4): 581-594.e8.
|
28 |
Tzeng A, Sangwan N, Jia M, et al. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer [J]. Genome Medicine, 2021, 13(1).
|
29 |
Zacksenhaus E, Shrestha M, Liu JC, et al. Mitochondrial OXPHOS induced by RB1 deficiency in breast cancer: implications for anabolic metabolism, stemness, and metastasis [J]. Trends Cancer, 2017, 3(11):768-779.
|
30 |
Mikó E, Kovács T, Sebő É, et al. Microbiome-microbial metabolomecancer cell interactions in breast cancer-familiar, but unexplored [J].Cells, 2019, 8(4): 293.
|
31 |
Knippel RJ, Drewes JL, Sears CL. The cancer microbiome: recent highlights and knowledge gaps [J]. Cancer Discov, 2021, 11(10):2378-2395.
|
32 |
Laborda-Illanes A, Aranega-Martín L, Sánchez-Alcoholado L, et al. Exploring the relationship between microRNAs, intratumoral microbiota, and breast cancer progression in patients with and without metastasis [J]. Int J Mol Sci, 2024, 25(13): 7091.
|
33 |
Zhang H, Fu L, Leiliang X, et al. Beyond the gut: The intratumoral microbiome's influence on tumorigenesis and treatment response [J].Cancer Commun (Lond), 2024, 44(10): 1130-1167.
|
34 |
Schwarcz S, Nyerges P, Bíró TI, et al. Cytostatic bacterial metabolites interfere with 5-fluorouracil, doxorubicin and paclitaxel efficiency in 4T1 breast cancer cells [J]. Molecules, 2024, 29(13): 3073.
|
35 |
Kim D, Yu Y, Jung KS, et al. Tumor microenvironment can predict chemotherapy response of patients with triple-negative breast cancer receiving neoadjuvant chemotherapy [J]. Cancer Res Treat, 2024,56(1): 162-177.
|
36 |
Ma W, Zhang L, Chen W, et al. Microbiota enterotoxigenic bacteroides fragilis-secreted BFT-1 promotes breast cancer cell stemness and chemoresistance through its functional receptor NOD1 [J]. Protein Cell, 2024, 15(6): 419-440.
|
37 |
Wang Y, Han Y, Yang C, et al. Long-term relapse-free survival enabled by integrating targeted antibacteria in antitumor treatment [J]. Nat Commun, 2024, 15(1): 4194.
|
38 |
Geng S, Guo P, Li X, et al. Biomimetic nanovehicle-enabled targeted depletion of intratumoral fusobacterium nucleatum synergizes with PD-L1 blockade against breast cancer [J]. ACS Nano, 2024, 18(12):8971-8987.
|
39 |
Williams JS, Higgins AT, Stott KJ, et al. Enhanced bacterial cancer therapy delivering therapeutic RNA interference of c-Myc [J]. Cell Biosci, 2024, 14(1): 38.
|
40 |
Nguyen DH, Chong A, Hong Y, et al. Bioengineering of bacteria for cancer immunotherapy [J]. Nat Commun, 2023, 14(1): 3553.
|