1 |
Coronel R, Bernabeu-Zornoza A, Palmer C, et al. Role of amyloid precursor protein (APP) and its derivatives in the biology and cell fate specification of neural stem cells [J]. Mol Neurobiol, 2018, 55(9): 7107.
|
2 |
Di Carlo M, Giacomazza D, San Biagio PL. Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic tools [J]. J Phys Condens Matter, 2012, 24(24): 244102.
|
3 |
Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications [J]. Curr Opin Neurobiol, 2012, 22(3): 496-508.
|
4 |
Vergara C, Houben S, Suain V, et al. Amyloid-beta pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo [J]. Acta Neuropathol, 2019, 137(3): 397-412.
|
5 |
HöLTTä M, Hansson O, Andreasson U, et al. Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer's disease [J]. PloS One, 2013, 8(6): e66381.
|
6 |
Wischik CM, Novak M, Edwards PC, et al. Structural characterization of the core of the paired helical filament of Alzheimer disease [J]. Proc Natl Acad Sci U S A, 1988, 85(13): 4884-4888.
|
7 |
Kimura T, Whitcomb DJ, Jo J, et al. Microtubule-associated protein tau is essential for long-term depression in the hippocampus [J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1633): 20130144.
|
8 |
Busche MA, Wegmann S, Dujardin S, et al. Tau impairs neural circuits, dominating amyloid-beta effects, in Alzheimer models in vivo [J]. Nat Neurosci, 2019, 22(1): 57-64.
|
9 |
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease [J]. Acta Neuropathol, 2017, 133(5): 665-704.
|
10 |
Jadhav S, Katina S, Kovac A, et al. Truncated tau deregulates synaptic markers in rat model for human tauopathy [J]. Front Cell Neurosci, 2015, 9: 24.
|
11 |
Takeda S, Wegmann S, Cho H, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain [J]. Nat Commun, 2015, 6: 8490.
|
12 |
Shafiei SS, Guerrero-Munoz MJ, Castillo-Carranza DL. Tau oligomers: cytotoxicity, propagation, and mitochondrial damage [J]. Front Aging Neurosci, 2017, 9: 83.
|
13 |
Mably AJ, Gereke BJ, Jones DT, et al. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer's disease [J]. Hippocampus, 2017, 27(4): 378-392.
|
14 |
Gillespie AK, Jones EA, Lin YH, et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples [J]. Neuron, 2016, 90(4): 740-751.
|
15 |
Prusiner SB. A unifying role for prions in neurodegenerative diseases [J]. Science, 2012, 336(6088): 1511-1513.
|
16 |
Condello C, Stoehr J. Abeta propagation and strains: Implications for the phenotypic diversity in Alzheimer's disease [J]. Neurobiol Dis, 2018, 109(Pt B): 191-200.
|
17 |
Hsu TM, Noble EE, Reiner DJ, et al. Hippocampus ghrelin receptor signaling promotes socially-mediated learned food preference [J]. Neuropharmacology, 2018, 131: 487-496.
|
18 |
Tian J, Guo L, Sui S, et al. Disrupted hippocampal growth hormone secretagogue receptor 1alpha interaction with dopamine receptor D1 plays a role in Alzheimer's disease [J]. Sci Transl Med, 2019, 11(505): eaav6278.
|
19 |
Jeong YO, Shin SJ, Park JY, et al. MK-0677, a ghrelin agonist, alleviates amyloid beta-related pathology in 5XFAD mice, an animal model of Alzheimer's disease [J]. Int J Mol Sci, 2018, 19(6): 1800.
|
20 |
Nortley R, Korte N, Izquierdo P, et al. Amyloid beta oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes [J]. Science, 2019, 365(6450): aav9518.
|
21 |
徐玉振, 王茜, 单敏, 等. 高压氧治疗对阿尔茨海默病患者认知功能及血清Humanin水平的影响 [J/OL]. 中华诊断学电子杂志, 2019, 7(2): 83-86.
|
22 |
Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer's disease-associated beta-amyloid is rapidly seeded by herpesviridae to protect against brain infection [J]. Neuron, 2018, 99(1): 56-63.e3.
|
23 |
Ide M, Harris M, Stevens A, et al. Periodontitis and cognitive decline in Alzheimer's disease [J]. PLoS One, 2016, 11(3): e0151081.
|
24 |
Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors [J]. Sci Adv, 2019, 5(1): eaau3333.
|
25 |
Zhou R, Yang G, Shi Y. Dominant negative effect of the loss-of-function gamma-secretase mutants on the wild-type enzyme through heterooligomerization [J]. Proc Natl Acad Sci U S A, 2017, 114(48): 12731-12736.
|
26 |
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases [J]. Curr Neurol Neurosci Rep, 2017, 17(12): 94.
|
27 |
Köhler CA, Maes M, Slyepchenko A, et al. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer's disease [J]. Curr Pharml Des, 2016, 22(40): 6152-6166.
|
28 |
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis [J]. Cell, 2015, 161(2): 264-276.
|
29 |
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015, 523(7560): 337-341.
|
30 |
Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson's disease [J]. World J Gastroenterol, 2015, 21(37): 10609-10620.
|
31 |
Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer's disease [J]. J Neurogastroenterol Motil, 2019, 25(1): 48-60.
|
32 |
Wang X, Zhu M, Hjorth E, et al. Resolution of inflammation is altered in Alzheimer's disease [J]. Alzheimer's Dement, 2015, 11(1): 40-50.e2.
|
33 |
Zhu M, Wang X, Hjorth E, et al. Pro-resolving lipid mediators improve neuronal survival and increase Aβ 42 phagocytosis [J]. Mol Neurobiol, 2016, 53(4): 2733-2749.
|
34 |
Zhu M, Wang X, Sun L, et al. Can inflammation be resolved in Alzheimer's disease? [J]. Ther Adv Neurol Disord, 2018, 11: 1756286418791107.
|
35 |
Lee JY, Han SH, Park MH, et al. N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer's disease [J]. Nat Commun, 2020, 11(1): 2358.
|
36 |
Brodbeck J, Mcguire J, Liu Z, et al. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors [J]. J Biol Chem, 2011, 286(19): 17217-17226.
|
37 |
Castellano JM, Kim J, Stewart FR, et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance [J]. Sci Transl Med, 2011, 3(89): 89ra57.
|
38 |
Giri M, Zhang M, Lü Y. Genes associated with Alzheimer's disease: an overview and current status [J]. Clin Interv Aging, 2016, 11: 665-681.
|
39 |
Hudry E, Dashkoff J, Roe AD, et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain [J]. Sci Transl Med, 2013, 5(212): 212ra161.
|
40 |
Pankiewicz JE, Guridi M, Kim J, et al. Blocking the apoE/Aβ interaction ameliorates Aβ-related pathology in APOE ε2 and ε4 targeted replacement Alzheimer model mice [J]. Acta Neuropathol Commun, 2014, 2: 75.
|