1 |
Rebecca L,Kimberly D. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 8(2): 145-164.
|
2 |
Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease [J]. Nature, 2002, 415(6871): 536-541.
|
3 |
Grabmeier-pfistershammer K, Stecher C, Zettl M, et al. Antibodies targeting BTLA or TIM-3 enhance HIV-1 specific T cell responses in combination with PD-1 blockade [J]. Clin Immunol, 2017, 183(2): 167-173.
|
4 |
Gefen T, Castro I, Muharemagic D, et al. A TIM-3 oligo-nucleotide aptamer enhances T cell functions and potentiates tumor immunity in mice [J]. Mol Ther, 2017, 25(10): 2280-2288.
|
5 |
Mckinney EF, Smith KG. T cell exhaustion and immune-mediated disease-the potential for thera- peutic exhaustion [J]. Curr Opin Immunol, 2016, 43(1): 74-80.
|
6 |
Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised ,open-label phase 2 trial [J]. Lancet Oncol, 2018, 19(7): 940-952.
|
7 |
Segal NH, Ou SI, Balmanoukian A, et al. Safety and efficacy of durvalumab in patients with head and neck squamous cell carcinoma: results from a phase I/II expansion cohort [J]. Eur J Cancer, 2019, 109: 154-161.
|
8 |
Huang J, Xu J, Chen Y, et al. Camrelizumab versus investigator's choice of chemotherapy as second-line therapy for advanced or metastatic esophageal squamous cell carcinoma (ES-CORT): a multicentre, randomized, open-label, phase 3 study [J]. Lancet Oncol, 2020, 21(6): 832-842.
|
9 |
Tabernero J, Van Cutsem E, Bang Y, et al. Pembrolizumab with or without chemotherapy versus chemotherapy for first-line treatment of advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: the phase 3 KEYNOTE-062 study [J]. Ann Oncol, 2019, 30(Suppl 4): iv152-iv153.
|
10 |
Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomized, phase 3 trial [J]. Lancet Oncol, 2018, 19(11): 1480-1492.
|
11 |
Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer [J]. N Engl J Med, 2018, 379(22): 2108-2121.
|
12 |
Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co- inhibitory receptors with specialized functions in immune regulation [J]. Immunity, 2016, 44(5): 989-1004.
|
13 |
Gao J, Qiu X, Li X, et al. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer [J]. Biochem Biophys Res Commun, 2018, 498(3): 409-415.
|
14 |
Granier C, Dariane C, Combe P, et al. Tim-3 expression on tumor infiltrating PD-1(+) CD8(+) T Cells correlates with poor clinical outcome in renal cell carcinoma [J]. Cancer Res, 2017, 77(5): 1075-1082.
|
15 |
Li F, Li N, Sang J, et al. Highly elevated soluble Tim-3 levels correlate with increased hepatocellular carcinoma risk and poor survival of hepato-cellular carcinoma patients in chronic hepatitis B virus infection [J]. Cancer Manag Res, 2018, 10(11): 941-951.
|
16 |
Yu JT, Zhang HH, Sun SB, et al. The effects of Tim-3 activation on T-cells in gastric cancer progression [J]. Oncol Lett, 2019, 17(2): 1461-1466.
|
17 |
Wang Y, Zhao E, Zhang Z, et al. Association between Tim-3 and Gal-9 expression gastric cancer prognosis [J]. Oncol Rep, 2018, 40(4): 2115-2126.
|
18 |
Zhou G, Sprengers D, Boor PPC, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas [J]. Gastroenterology, 2017, 153(4): 1107-1110.
|
19 |
Wang F, Mao Z, Liu D, et al. Overexpression of Tim-3 reduces Helicobacter pylori-associated inflammation through TLR4/NFkappaB signaling in vitro [J]. Mol Med Rep, 2017, 15(5): 3252-3258.
|
20 |
Naghavi-Alhosseini M, Tehrani M, Ajami A, et al. Tim-3 up-regulation in patients with gastric cancer and peptic ulcer disease [J]. Asian Pac J Cancer Prev, 2017, 18(3): 765-770.
|