切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (10) : 790 -793. doi: 10.3877/cma.j.issn.1674-0785.2021.10.013

综述

人源性肿瘤异种移植模型在三阴性乳腺癌研究中的应用
郭俏丽1, 胡慧2,()   
  1. 1. 518036 深圳,北京大学深圳医院乳腺甲状腺外科;515041 汕头,汕头大学医学院
    2. 518036 深圳,北京大学深圳医院乳腺甲状腺外科
  • 收稿日期:2021-04-03 出版日期:2021-10-15
  • 通信作者: 胡慧

Application of patient-derived xenograft model in study of triple-negative breast cancer

Qiaoli Guo1, Hui Hu2,()   

  1. 1. Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shantou University Medical College, Shantou 515041, China
    2. Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
  • Received:2021-04-03 Published:2021-10-15
  • Corresponding author: Hui Hu
引用本文:

郭俏丽, 胡慧. 人源性肿瘤异种移植模型在三阴性乳腺癌研究中的应用[J]. 中华临床医师杂志(电子版), 2021, 15(10): 790-793.

Qiaoli Guo, Hui Hu. Application of patient-derived xenograft model in study of triple-negative breast cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(10): 790-793.

三阴性乳腺癌是一种缺乏雌激素受体、孕激素受体和人表皮生长因子受体2表达的乳腺癌亚型,与其他类型乳腺癌相比,三阴性乳腺癌发病年龄更早、恶性程度更高、预后更差,一直是研究关注的重点。人源性异种移植模型是一种把来源于患者肿瘤组织或原代细胞移植入免疫缺陷小鼠内形成移植瘤的模型,能很好地保留原代肿瘤的生物学特性,它在肿瘤研究中的应用越来越多,特别是三阴性乳腺癌的研究。本文就人源性肿瘤异种移植模型在三阴性乳腺癌研究中的应用进行综述。

Triple-negative breast cancer is one of the subtypes of breast cancer, which exhibits a lack of the expression of estrogen receptor and progesterone receptor and the amplification of human epidermal growth factor receptor 2. Compared with other subtypes, triple-negative breast cancer has a younger onset age, higher degree of malignancy, and worse prognosis, which has always been the focus of clinical and research. Patient-derived xenograft model is established by engrafting tumor tissue or primary cells into immunodeficient mice, which faithfully retains the biological features of the primary tumor. It has been widely used in the study of triple-negative breast cancer. This review describes the application of patient-derived xenograft model in the study of triple-negative breast cancer.

图1 人源性异种移植(PDX)模型构建过程示意图
1
International Agency for Research on Cancer. Global Cancer Observatory: Cancer Today [EB/OL]. [2021-01-11].

URL    
2
Sasaki Y, Tsuda H. Clinicopathological characteristics of triple-negative breast cancers [J]. Breast Cancer, 2009, 16(4): 254-259.
3
Rhee J, Han SW, Oh DY, et al. The clinicopathologic characteristics and prognostic significance of triple-negativity in node-negative breast cancer [J]. BMC Cancer, 2008, 8(1): 307.
4
Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence [J]. Clin Cancer Res, 2007, 13(15): 4429-4434.
5
Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer [J]. N Engl J Med, 2009, 353(16): 1673-1684.
6
Peto R, Davies C, Godwin J, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100000 women in 123 randomised trials [J]. The Lancet, 2012, 379(9814): 432-444.
7
Zhang X, Claerhout S, Prat A, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models [J]. Cancer Research, 2013, 73(15): 4885-4897.
8
Manoir SD, Orsetti B, Rui BG, et al. Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse [J]. Mol Oncol, 2014, 8(2): 431-443.
9
Ledford H. US cancer institute to overhaul tumour cell lines [J]. Nature, 2016, 530(7591): 391-391.
10
Gómez-Miragaya J, Palafox M, Paré L, et al. Resistance to taxanes in triple-negative breast cancer associates with the dynamics of a CD49f+ tumor-initiating population [J]. Stem Cell Reports, 2017, 8(5): 1392-1407.
11
Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell [J]. J Cell Biochem, 2003, 88(4): 660.
12
Saatci O, Kaymak A, Raza U, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer [J]. Nat Commun, 2020, 11(1): 2416.
13
Marty B, Maire V, Gravier E, et al. Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells [J]. Breast Cancer Res, 2008, 10(6): R101.
14
Zeng Q, Yang Z, Gao YJ, et al. Treating triple-negative breast cancer by a combination of rapamycin and cyclophosphamide: an in vivo bioluminescence imaging study [J]. Eur J Cancer, 2010, 46(6): 1132-1143.
15
Zhang H, Cohen AL, Krishnakumar S, et al. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition [J]. Breast Cancer Res, 2014, 16(2): R36.
16
Marangoni E, Laurent C, Coussy F, et al. Capecitabine efficacy is correlated with TYMP and RB expression in PDX established from triple-negative breast cancers [J]. Clin Cancer Res, 2018, 24(11): 2605-2615.
17
Cowan LA, Talwar S, Yang AS. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors [J]. Epigenomics, 2010, 2(1): 71-86.
18
Jia Y, Bo Q, Moyer AM, et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine [J]. J Clin Invest, 2018, 128(6): 2376-2388.
19
Dang C. MYC on the path to cancer [J]. Cell, 2012, 149(1): 22-35.
20
Dai H, Kusdra L, Huskey NE, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition [J]. J Exp Med, 2012, 209(4): 679-696.
21
Dai H, Camarda R, Zhou AY, et al. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression [J]. Nat Med, 2016, 22(11): 1321-1329.
22
Liu Y, Zhou Y, Huang KH, et al. Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor [J]. Cell Prolif, 2020, 53(8): e12858.
23
Contrino J, Hair G, Kreutzer DL, et al. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease [J]. Nat Med, 1996, 2(2): 209-215.
24
Duanmu J, Cheng J, Xu J, et al. Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor Ⅷ-targeted photodynamic therapy [J]. Br J Cancer, 2011, 104(9): 1401-1409.
25
Hu Z, Shen R, Campbell A, et al. Targeting tissue factor for immunotherapy of triple-negative breast cancer using a second-generation ICON [J]. Cancer Immunol Res, 2018, 6(6): 671-684.
26
Bourcy M, Suarez-Carmona M, Lambert J, et al. Tissue factor induced by epithelial-mesenchymal transition triggers a pro-coagulant state that drives metastasis of circulating tumor cells [J]. Cancer Res, 2016, 76(14): 4270-4282.
27
Bousquet G, Feugeas JP, Ferreira I, et al. Individual xenograft as a personalized therapeutic resort for women with metastatic triple-negative breast carcinoma [J]. Breast Cancer Res, 2014, 16(1): 401-403.
28
Moon HG, Oh K, Lee J, et al. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers [J]. Breast Cancer Res Treat, 2015, 154(1): 13-22.
29
Peterson JK, Houghton PJ. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development [J]. Eur J Cancer, 2004, 40(6): 837-844.
30
Izumchenko E, Paz K, Ciznadija D, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors [J]. Ann Oncol, 2017, 28(10): 2595-2605.
[1] 黄钰清, 武杜杜, 潘菲, 王俊康, 钟兆明, 黎檀实, 吕发勤. 掌上超声在枪弹伤致髂动脉破裂大出血建模中的应用研究[J]. 中华医学超声杂志(电子版), 2022, 19(10): 1112-1117.
[2] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[3] 于金玲, 高蓓敏, 崔静, 王浩峰, 朱江帆, 沈卫达. 环状RNA circ_0007823在三阴性乳腺癌中的表达及其对细胞生物学行为的影响[J]. 中华乳腺病杂志(电子版), 2022, 16(04): 204-211.
[4] 李传举, 刘林月, 王美, 李昕, 韩祥辉, 贾海永. 乙型肝炎病毒感染模型研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 361-365.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 张彬月, 贾红燕. 紫杉醇/白蛋白紫杉醇为基础的化疗联合PD-1/PD-L1抑制剂治疗三阴性乳腺癌的疗效和安全性:荟萃分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 52-58.
[8] 邵世锋, 伍正彬, 段朝霞, 张良潮, 王耀丽, 李琦, 王建民. 山羊高原重度原发性肺冲击伤模型的建立[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 637-642.
[9] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[10] 姜金玉, 张东蕾, 何伟. 蓝光照射氧化损伤模型在眼部疾病中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 168-172.
[11] 杨凡, 张虹, 李嘉颐, 辛灵, 向泓雨, 刘倩, 程元甲, 叶京明, 段学宁, 刘荫华, 徐玲, 张爽. 早期三阴性乳腺癌中CK5/6的表达特点及其与预后和新辅助化疗疗效的相关性[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1081-1088.
[12] 牟鳄贤, 王浩, 夏莉, 李娟, 曾石岩, 于淼, 李俊杰, 徐佳, 张蒲蓉, 卢漫, 李卉, 刘世伟. 超声造影联合单染料法前哨淋巴结活检术在初始腋窝淋巴结转移HER2阳性及三阴型乳腺癌中的应用研究[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1068-1074.
[13] 路明, 杨博, 刘扬, 王慧, 洪文, 黄克林, 刘青. 肛门失禁大动物模型的建立[J]. 中华临床医师杂志(电子版), 2022, 16(04): 356-361.
[14] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[15] 高飞, 李惠凯, 冯秀雪, 杜晨, 韩珂, 柴宁莉, 令狐恩强. 3%聚桂醇消融动物囊性肿瘤模型的有效性和安全性研究[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 31-36.
阅读次数
全文


摘要