1 |
Ballester B, Milara J, Cortijo J, et al. Mucins as a new frontier in pulmonary fibrosis [J]. J Clin Med, 2019, 8(9): 1447.
|
2 |
Heukels P, Moor CC, Von der Thüsen JH, et al. Inflammation and immunity in IPF pathogenesis and treatment [J]. Respir Med, 2019, 147: 79-91.
|
3 |
Sgalla G, Iovene B, Calvello M, et al. Idiopathic pulmonary fibrosis: pathogenesis and management [J]. Respir Res, 2018, 19(1): 32.
|
4 |
Meyer KC. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis [J]. Expert Rev Respir Med, 2017, 11(5): 343-359.
|
5 |
何巧. 特发性肺纤维化机制研究进展 [D]. 重庆: 重庆医科大学, 2019.
|
6 |
Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy [J]. Nature, 2004, 429(6990): 457-463.
|
7 |
Tzouvelekis A, Kaminski N. Epigenetics of idiopathic pulmonary fibrosis [J]. Biochem Cell Biol, 2015, 93(2): 159-170.
|
8 |
Dakhlallah D, Batte K, Wang Y, et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2013, 187(4): 397-405.
|
9 |
Kidd C, Hayden BY. The psychology and neuroscience of Curiosity [J]. Neuron, 2015, 88(3): 449-460.
|
10 |
Lu TX, Rothenberg ME. MicroRNA [J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
|
11 |
Chen L, Heikkinen L, Wang C, et al. Trends in the development of microRNA bioinformatics tools [J]. Brief Bioinform, 2019, 20(5): 1836-1852.
|
12 |
孙鑫鑫, 舒静, 许萍. 长链非编码RNA在肺纤维化中的作用研究进展 [J]. 实用临床医学, 2020, 21(3): 104-107.
|
13 |
Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2010, 182(2): 220-229.
|
14 |
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis [J]. J Exp Med, 2010, 207(8): 1589-1597.
|
15 |
Kuse N, Kamio K, Azuma A, et al. Exosome-derived microRNA-22 ameliorates pulmonary fibrosis by regulating fibroblast-to-myofibroblast differentiation in vitro and in vivo [J]. J Nippon Med Sch, 2020, 87(3): 118-128.
|
16 |
Xie T, Liang J, Geng Y, et al. MicroRNA-29c prevents pulmonary fibrosis by regulating epithelial cell renewal and apoptosis [J]. Am J Respir Cell Mol Biol, 2017, 57(6): 721-732.
|
17 |
Shetty SK, Tiwari N, Marudamuthu AS, et al. p53 and miR-34a feedback promotes lung epithelial injury and pulmonary fibrosis [J]. Am J Pathol, 2017, 187(5): 1016-1034.
|
18 |
Huang C, Xiao X, Yang Y, et al. MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferationand activation [J]. J Biol Chem, 2017, 292(40): 16420-16439.
|
19 |
Cao Y, Liu Y, Ping F, et al. miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways [J]. Lab Invest, 2018, 98(3): 339-359.
|
20 |
黄明华, 曾林祥. 非编码RNA与肺纤维化的相关研究进展 [J]. 生命科学, 2019, 31(1): 55-60.
|
21 |
Wei P, Xie Y, Abel PW, et al. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis [J]. Cell Death Dis, 2019, 10(9): 670.
|
22 |
Wang CJ, Li BB, Tan YJ, et al. MicroRNA-31/184 is involved in transforming growth factor-β-induced apoptosis in A549 human alveolar adenocarcinoma cells [J]. Life Sci, 2020, 242: 117205.
|
23 |
Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis [J]. Kidney Int, 2014, 87(2): 297-307.
|
24 |
周钱辉, 彭红, 颜又新, 等. TGF-β1及其信号通路对话在肺纤维化中的研究进展 [J]. 国际呼吸杂志, 2018, 38(4): 315-320.
|
25 |
袁佺, 庞立健, 臧凝子, 等. TGF-β1/smads信号转导通路在IPF病程中的作用初探 [J].辽宁中医药大学学报, 2014, 16(8): 97-100.
|
26 |
Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology [J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873.
|
27 |
杨萍芬, 牛艳芬. TGF-β1/Smad信号通路在组织纤维化中的研究进展 [J]. 国际药学研究杂志, 2019, 46(10): 738-744.
|
28 |
李娜, 李科君, 杜利清. 肺纤维化中肌成纤维细胞活化机制的研究进展 [J]. 基础医学与临床, 2019, 39(9): 1341-1345.
|
29 |
程飚, 付小兵, 盛志勇, 等. 瘢痕组织中α-平滑肌肌动蛋白的表达与细胞凋亡的关系[J]. 中国病理生理杂志, 2002, 18(11): 1333-1336.
|
30 |
徐秋颖, 刘伟伟, 高永翔. 康复新液对博来霉素诱导大鼠肺纤维化模型的治疗作用 [J].福建医科大学学报, 2018, 52(2): 75-79.
|
31 |
吴桂清, 王亚红, 刘刚. 基质金属蛋白酶在肺纤维化的研究进展 [J]. 临床肺科杂志, 2020, 25(7): 1096-1099, 1113.
|
32 |
Chakraborti S, Mandal M, Das S, et al. Regulation of matrix metalloproteinases: an overview [J]. Mol Cell Biochem, 2003, 253(1-2): 269-285.
|
33 |
刘晓艳, 陈强. 基质金属蛋白酶及其抑制剂在特发性肺纤维化中的作用 [J]. 南昌大学学报(医学版), 2015, 55(1): 88-91, 100.
|
34 |
TH V, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology [J]. Genes Dev, 2000, 14(17): 2123–2133.
|
35 |
Corbel M, Belleguic C, Boichot E, et al. Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis [J]. Cell Biol Toxicol, 2002, 18(1): 51-61.
|
36 |
高娟, 王添印, 韩茹, 等. MMP-9、TIMP-1在肺纤维化中作用的研究进展 [J]. 山东医药, 2017, 57(26): 104-106.
|
37 |
Selman M, Ruiz V, Cabrera S, et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment [J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279(3): L562-L574.
|
38 |
Craig VJ, Zhang L, Hagood JS, et al. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis [J]. Am J Respir Cell Mol Biol, 2015, 53(5): 585-600.
|