切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (10) : 794 -796. doi: 10.3877/cma.j.issn.1674-0785.2021.10.014

综述

microRNA-133a在抗肺纤维化作用中的研究进展
高菲1, 陈娜2, 张才擎3,()   
  1. 1. 250014 济南,山东大学齐鲁医学院
    2. 264200 威海,威海市中医院皮肤科
    3. 250014 济南,山东大学齐鲁医学院;250000 济南,山东省第二人民医院呼吸与危重症医学科
  • 收稿日期:2021-04-18 出版日期:2021-10-15
  • 通信作者: 张才擎

Inhibitory role of microRNA-133a in pulmonary fibrosis

Fei Gao1, Na Chen2, Caiqing Zhang3,()   

  1. 1. Cheeloo College of Medicine, Shandong University, Jinan 250014, China
    2. Department of Dermatology, Weihai Hospital of Traditional Chinese Medicine, Weihai 264200, China
    3. Cheeloo College of Medicine, Shandong University, Jinan 250014, China; Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan 250000, China
  • Received:2021-04-18 Published:2021-10-15
  • Corresponding author: Caiqing Zhang
引用本文:

高菲, 陈娜, 张才擎. microRNA-133a在抗肺纤维化作用中的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(10): 794-796.

Fei Gao, Na Chen, Caiqing Zhang. Inhibitory role of microRNA-133a in pulmonary fibrosis[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(10): 794-796.

肺纤维化是由于各种因素导致成纤维细胞活化及分化为肌成纤维细胞,细胞外基质的产生及其沉积、积聚等,最终导致肺功能衰竭的一类疾病,尚未有有效的治疗方法。目前研究发现miR-133a可调控转化生长因子-β(TGF-β)信号通路,来抑制纤维化的发展甚至部分逆转,这为肺纤维化的治疗研究提供了前沿方向。未来可通过研究miR-133a,探索其在人体TGF-β信号通路中的具体作用,从而为肺纤维化的治疗提供新方向。

Pulmonary fibrosis is a kind of disease caused by various factors that result in the change of fibroblasts, including their activation along with differentiation into myofibroblasts, and the generation and deposition of the extracellular matrix, which eventually leads to functional failure. Currently, there is a lack of effective treatment. However, current studies have found that microRNA-133a (miR-133a) can regulate the transforming growth factor-β (TGF-β) signaling pathway, thereby inhibiting pulmonary fibrosis, which provides a new target for the treatment of pulmonary fibrosis. In the future, miR-133a can be studied to explore its specific role in the human TGF-β signaling pathway, so as to provide a new direction for the treatment of pulmonary fibrosis.

1
Ballester B, Milara J, Cortijo J, et al. Mucins as a new frontier in pulmonary fibrosis [J]. J Clin Med, 2019, 8(9): 1447.
2
Heukels P, Moor CC, Von der Thüsen JH, et al. Inflammation and immunity in IPF pathogenesis and treatment [J]. Respir Med, 2019, 147: 79-91.
3
Sgalla G, Iovene B, Calvello M, et al. Idiopathic pulmonary fibrosis: pathogenesis and management [J]. Respir Res, 2018, 19(1): 32.
4
Meyer KC. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis [J]. Expert Rev Respir Med, 2017, 11(5): 343-359.
5
何巧. 特发性肺纤维化机制研究进展 [D]. 重庆: 重庆医科大学, 2019.
6
Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy [J]. Nature, 2004, 429(6990): 457-463.
7
Tzouvelekis A, Kaminski N. Epigenetics of idiopathic pulmonary fibrosis [J]. Biochem Cell Biol, 2015, 93(2): 159-170.
8
Dakhlallah D, Batte K, Wang Y, et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2013, 187(4): 397-405.
9
Kidd C, Hayden BY. The psychology and neuroscience of Curiosity [J]. Neuron, 2015, 88(3): 449-460.
10
Lu TX, Rothenberg ME. MicroRNA [J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
11
Chen L, Heikkinen L, Wang C, et al. Trends in the development of microRNA bioinformatics tools [J]. Brief Bioinform, 2019, 20(5): 1836-1852.
12
孙鑫鑫, 舒静, 许萍. 长链非编码RNA在肺纤维化中的作用研究进展 [J]. 实用临床医学, 2020, 21(3): 104-107.
13
Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2010, 182(2): 220-229.
14
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis [J]. J Exp Med, 2010, 207(8): 1589-1597.
15
Kuse N, Kamio K, Azuma A, et al. Exosome-derived microRNA-22 ameliorates pulmonary fibrosis by regulating fibroblast-to-myofibroblast differentiation in vitro and in vivo [J]. J Nippon Med Sch, 2020, 87(3): 118-128.
16
Xie T, Liang J, Geng Y, et al. MicroRNA-29c prevents pulmonary fibrosis by regulating epithelial cell renewal and apoptosis [J]. Am J Respir Cell Mol Biol, 2017, 57(6): 721-732.
17
Shetty SK, Tiwari N, Marudamuthu AS, et al. p53 and miR-34a feedback promotes lung epithelial injury and pulmonary fibrosis [J]. Am J Pathol, 2017, 187(5): 1016-1034.
18
Huang C, Xiao X, Yang Y, et al. MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferationand activation [J]. J Biol Chem, 2017, 292(40): 16420-16439.
19
Cao Y, Liu Y, Ping F, et al. miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways [J]. Lab Invest, 2018, 98(3): 339-359.
20
黄明华, 曾林祥. 非编码RNA与肺纤维化的相关研究进展 [J]. 生命科学, 2019, 31(1): 55-60.
21
Wei P, Xie Y, Abel PW, et al. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis [J]. Cell Death Dis, 2019, 10(9): 670.
22
Wang CJ, Li BB, Tan YJ, et al. MicroRNA-31/184 is involved in transforming growth factor-β-induced apoptosis in A549 human alveolar adenocarcinoma cells [J]. Life Sci, 2020, 242: 117205.
23
Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis [J]. Kidney Int, 2014, 87(2): 297-307.
24
周钱辉, 彭红, 颜又新, 等. TGF-β1及其信号通路对话在肺纤维化中的研究进展 [J]. 国际呼吸杂志, 2018, 38(4): 315-320.
25
袁佺, 庞立健, 臧凝子, 等. TGF-β1/smads信号转导通路在IPF病程中的作用初探 [J].辽宁中医药大学学报, 2014, 16(8): 97-100.
26
Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology [J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873.
27
杨萍芬, 牛艳芬. TGF-β1/Smad信号通路在组织纤维化中的研究进展 [J]. 国际药学研究杂志, 2019, 46(10): 738-744.
28
李娜, 李科君, 杜利清. 肺纤维化中肌成纤维细胞活化机制的研究进展 [J]. 基础医学与临床, 2019, 39(9): 1341-1345.
29
程飚, 付小兵, 盛志勇, 等. 瘢痕组织中α-平滑肌肌动蛋白的表达与细胞凋亡的关系[J]. 中国病理生理杂志, 2002, 18(11): 1333-1336.
30
徐秋颖, 刘伟伟, 高永翔. 康复新液对博来霉素诱导大鼠肺纤维化模型的治疗作用 [J].福建医科大学学报, 2018, 52(2): 75-79.
31
吴桂清, 王亚红, 刘刚. 基质金属蛋白酶在肺纤维化的研究进展 [J]. 临床肺科杂志, 2020, 25(7): 1096-1099, 1113.
32
Chakraborti S, Mandal M, Das S, et al. Regulation of matrix metalloproteinases: an overview [J]. Mol Cell Biochem, 2003, 253(1-2): 269-285.
33
刘晓艳, 陈强. 基质金属蛋白酶及其抑制剂在特发性肺纤维化中的作用 [J]. 南昌大学学报(医学版), 2015, 55(1): 88-91, 100.
34
TH V, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology [J]. Genes Dev, 2000, 14(17): 2123–2133.
35
Corbel M, Belleguic C, Boichot E, et al. Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis [J]. Cell Biol Toxicol, 2002, 18(1): 51-61.
36
高娟, 王添印, 韩茹, 等. MMP-9、TIMP-1在肺纤维化中作用的研究进展 [J]. 山东医药, 2017, 57(26): 104-106.
37
Selman M, Ruiz V, Cabrera S, et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment [J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279(3): L562-L574.
38
Craig VJ, Zhang L, Hagood JS, et al. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis [J]. Am J Respir Cell Mol Biol, 2015, 53(5): 585-600.
[1] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[2] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[3] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[4] 李青原, 冯同, 邱雪琴, 李万成. 迷迭香提取物防治肺纤维化研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 908-911.
[5] 蒋梦洁, 钱治军, 徐思, 梁伟. 低强度脉冲超声波治疗冻结肩模型兔的实验研究[J]. 中华肩肘外科电子杂志, 2023, 11(01): 30-34.
[6] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[7] 黄嘉明, 段红霞, 赖逾鹏, 王大吉, 刘兴娇, 沈鑫, 王梅英. 狼疮性肾炎慢性化中肾脏固有细胞的间充质化研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 347-352.
[8] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[9] 李文捷, 卢弘. 幼年特发性关节炎相关葡萄膜炎的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 40-44.
[10] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[11] 付强, 秦丽媛, 李全波. 神经病理性疼痛患者血清miR-15a水平及意义分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 293-298.
[12] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[13] 马强, 李军, 苟丽娟. 重症急性胰腺炎miR-21-3p、RUNX3表达水平及对病情发展程度的预测[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 337-341.
[14] 王敏, 张妍, 王盈熹, 赵龙, 夏书月. 外泌体在慢性阻塞性肺疾病中的作用[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 45-51.
[15] 吕昆明, 王沙沙, 万军, 令狐恩强. 胃食管反流病与特发性肺纤维化关系的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 121-124.
阅读次数
全文


摘要