切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (10) : 794 -796. doi: 10.3877/cma.j.issn.1674-0785.2021.10.014

综述

microRNA-133a在抗肺纤维化作用中的研究进展
高菲1, 陈娜2, 张才擎3,()   
  1. 1. 250014 济南,山东大学齐鲁医学院
    2. 264200 威海,威海市中医院皮肤科
    3. 250014 济南,山东大学齐鲁医学院;250000 济南,山东省第二人民医院呼吸与危重症医学科
  • 收稿日期:2021-04-18 出版日期:2021-10-15
  • 通信作者: 张才擎

Inhibitory role of microRNA-133a in pulmonary fibrosis

Fei Gao1, Na Chen2, Caiqing Zhang3,()   

  1. 1. Cheeloo College of Medicine, Shandong University, Jinan 250014, China
    2. Department of Dermatology, Weihai Hospital of Traditional Chinese Medicine, Weihai 264200, China
    3. Cheeloo College of Medicine, Shandong University, Jinan 250014, China; Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan 250000, China
  • Received:2021-04-18 Published:2021-10-15
  • Corresponding author: Caiqing Zhang
引用本文:

高菲, 陈娜, 张才擎. microRNA-133a在抗肺纤维化作用中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2021, 15(10): 794-796.

Fei Gao, Na Chen, Caiqing Zhang. Inhibitory role of microRNA-133a in pulmonary fibrosis[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(10): 794-796.

肺纤维化是由于各种因素导致成纤维细胞活化及分化为肌成纤维细胞,细胞外基质的产生及其沉积、积聚等,最终导致肺功能衰竭的一类疾病,尚未有有效的治疗方法。目前研究发现miR-133a可调控转化生长因子-β(TGF-β)信号通路,来抑制纤维化的发展甚至部分逆转,这为肺纤维化的治疗研究提供了前沿方向。未来可通过研究miR-133a,探索其在人体TGF-β信号通路中的具体作用,从而为肺纤维化的治疗提供新方向。

Pulmonary fibrosis is a kind of disease caused by various factors that result in the change of fibroblasts, including their activation along with differentiation into myofibroblasts, and the generation and deposition of the extracellular matrix, which eventually leads to functional failure. Currently, there is a lack of effective treatment. However, current studies have found that microRNA-133a (miR-133a) can regulate the transforming growth factor-β (TGF-β) signaling pathway, thereby inhibiting pulmonary fibrosis, which provides a new target for the treatment of pulmonary fibrosis. In the future, miR-133a can be studied to explore its specific role in the human TGF-β signaling pathway, so as to provide a new direction for the treatment of pulmonary fibrosis.

1
Ballester B, Milara J, Cortijo J, et al. Mucins as a new frontier in pulmonary fibrosis [J]. J Clin Med, 2019, 8(9): 1447.
2
Heukels P, Moor CC, Von der Thüsen JH, et al. Inflammation and immunity in IPF pathogenesis and treatment [J]. Respir Med, 2019, 147: 79-91.
3
Sgalla G, Iovene B, Calvello M, et al. Idiopathic pulmonary fibrosis: pathogenesis and management [J]. Respir Res, 2018, 19(1): 32.
4
Meyer KC. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis [J]. Expert Rev Respir Med, 2017, 11(5): 343-359.
5
何巧. 特发性肺纤维化机制研究进展 [D]. 重庆: 重庆医科大学, 2019.
6
Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy [J]. Nature, 2004, 429(6990): 457-463.
7
Tzouvelekis A, Kaminski N. Epigenetics of idiopathic pulmonary fibrosis [J]. Biochem Cell Biol, 2015, 93(2): 159-170.
8
Dakhlallah D, Batte K, Wang Y, et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2013, 187(4): 397-405.
9
Kidd C, Hayden BY. The psychology and neuroscience of Curiosity [J]. Neuron, 2015, 88(3): 449-460.
10
Lu TX, Rothenberg ME. MicroRNA [J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
11
Chen L, Heikkinen L, Wang C, et al. Trends in the development of microRNA bioinformatics tools [J]. Brief Bioinform, 2019, 20(5): 1836-1852.
12
孙鑫鑫, 舒静, 许萍. 长链非编码RNA在肺纤维化中的作用研究进展 [J]. 实用临床医学, 2020, 21(3): 104-107.
13
Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2010, 182(2): 220-229.
14
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis [J]. J Exp Med, 2010, 207(8): 1589-1597.
15
Kuse N, Kamio K, Azuma A, et al. Exosome-derived microRNA-22 ameliorates pulmonary fibrosis by regulating fibroblast-to-myofibroblast differentiation in vitro and in vivo [J]. J Nippon Med Sch, 2020, 87(3): 118-128.
16
Xie T, Liang J, Geng Y, et al. MicroRNA-29c prevents pulmonary fibrosis by regulating epithelial cell renewal and apoptosis [J]. Am J Respir Cell Mol Biol, 2017, 57(6): 721-732.
17
Shetty SK, Tiwari N, Marudamuthu AS, et al. p53 and miR-34a feedback promotes lung epithelial injury and pulmonary fibrosis [J]. Am J Pathol, 2017, 187(5): 1016-1034.
18
Huang C, Xiao X, Yang Y, et al. MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferationand activation [J]. J Biol Chem, 2017, 292(40): 16420-16439.
19
Cao Y, Liu Y, Ping F, et al. miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways [J]. Lab Invest, 2018, 98(3): 339-359.
20
黄明华, 曾林祥. 非编码RNA与肺纤维化的相关研究进展 [J]. 生命科学, 2019, 31(1): 55-60.
21
Wei P, Xie Y, Abel PW, et al. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis [J]. Cell Death Dis, 2019, 10(9): 670.
22
Wang CJ, Li BB, Tan YJ, et al. MicroRNA-31/184 is involved in transforming growth factor-β-induced apoptosis in A549 human alveolar adenocarcinoma cells [J]. Life Sci, 2020, 242: 117205.
23
Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis [J]. Kidney Int, 2014, 87(2): 297-307.
24
周钱辉, 彭红, 颜又新, 等. TGF-β1及其信号通路对话在肺纤维化中的研究进展 [J]. 国际呼吸杂志, 2018, 38(4): 315-320.
25
袁佺, 庞立健, 臧凝子, 等. TGF-β1/smads信号转导通路在IPF病程中的作用初探 [J].辽宁中医药大学学报, 2014, 16(8): 97-100.
26
Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology [J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873.
27
杨萍芬, 牛艳芬. TGF-β1/Smad信号通路在组织纤维化中的研究进展 [J]. 国际药学研究杂志, 2019, 46(10): 738-744.
28
李娜, 李科君, 杜利清. 肺纤维化中肌成纤维细胞活化机制的研究进展 [J]. 基础医学与临床, 2019, 39(9): 1341-1345.
29
程飚, 付小兵, 盛志勇, 等. 瘢痕组织中α-平滑肌肌动蛋白的表达与细胞凋亡的关系[J]. 中国病理生理杂志, 2002, 18(11): 1333-1336.
30
徐秋颖, 刘伟伟, 高永翔. 康复新液对博来霉素诱导大鼠肺纤维化模型的治疗作用 [J].福建医科大学学报, 2018, 52(2): 75-79.
31
吴桂清, 王亚红, 刘刚. 基质金属蛋白酶在肺纤维化的研究进展 [J]. 临床肺科杂志, 2020, 25(7): 1096-1099, 1113.
32
Chakraborti S, Mandal M, Das S, et al. Regulation of matrix metalloproteinases: an overview [J]. Mol Cell Biochem, 2003, 253(1-2): 269-285.
33
刘晓艳, 陈强. 基质金属蛋白酶及其抑制剂在特发性肺纤维化中的作用 [J]. 南昌大学学报(医学版), 2015, 55(1): 88-91, 100.
34
TH V, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology [J]. Genes Dev, 2000, 14(17): 2123–2133.
35
Corbel M, Belleguic C, Boichot E, et al. Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis [J]. Cell Biol Toxicol, 2002, 18(1): 51-61.
36
高娟, 王添印, 韩茹, 等. MMP-9、TIMP-1在肺纤维化中作用的研究进展 [J]. 山东医药, 2017, 57(26): 104-106.
37
Selman M, Ruiz V, Cabrera S, et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment [J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279(3): L562-L574.
38
Craig VJ, Zhang L, Hagood JS, et al. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis [J]. Am J Respir Cell Mol Biol, 2015, 53(5): 585-600.
[1] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[2] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[3] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[4] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[5] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[6] 赵静, 张嘉欣, 高言, 谢席胜. 微小病变肾病的发病机制及治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 207-212.
[7] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[8] 孙鼎, 王滨, 陈香美, 陈意志. 热应激肾病的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 170-176.
[9] 贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.
[10] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[11] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
[12] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[13] 郑鑫蓥, 张惠勇, 黄星, 邱磊, 方庆亮, 鹿振辉, 王蕾. TGF-β在放射治疗中的双重调控作用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 309-314.
[14] 厉若男, 宋进, 王玉忠. 带状疱疹后神经痛的发病机制和诊治研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 199-205.
[15] 王可涵, 许涛, 周全红. 围术期谵妄与应激的研究进展[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 45-49.
阅读次数
全文


摘要