切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 94 -99. doi: 10.3877/cma.j.issn.1674-0785.2022.01.016

基础研究

表皮生长因子受体在黑色素瘤紫杉醇耐药性中的机制研究
陈文静1, 唐乙厶1, 赵蓓1,(), 徐敏燕1, 李涛1   
  1. 1. 610072 成都,四川省医学科学院·四川省人民医院(电子科技大学附属医院)皮肤病性病研究所
  • 收稿日期:2021-07-18 出版日期:2022-01-15
  • 通信作者: 赵蓓
  • 基金资助:
    四川省科技厅省级科研院所基本科研业务项目(2018YSKY0017-11)

Mechanisms of epidermal growth factor receptor in paclitaxel resistance of melanoma

Wenjing Chen1, Yisi Tang1, Bei Zhao1,(), Minyan Xu1, Tao Li1   

  1. 1. Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital (Affiliated Hospital of UESTC), Chengdu 610000, China
  • Received:2021-07-18 Published:2022-01-15
  • Corresponding author: Bei Zhao
引用本文:

陈文静, 唐乙厶, 赵蓓, 徐敏燕, 李涛. 表皮生长因子受体在黑色素瘤紫杉醇耐药性中的机制研究[J/OL]. 中华临床医师杂志(电子版), 2022, 16(01): 94-99.

Wenjing Chen, Yisi Tang, Bei Zhao, Minyan Xu, Tao Li. Mechanisms of epidermal growth factor receptor in paclitaxel resistance of melanoma[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(01): 94-99.

目的

探究紫杉醇对黑色素瘤的作用机制及表皮生长因子受体(EGFR)信号通路在调节黑色素瘤侵袭与转移中的作用,揭示该信号通路与紫杉醇耐药的关系及相关机制。

方法

以EGFR高表达的恶性黑色素瘤A375细胞为研究对象,采用流式细胞术、细胞迁移实验、MTT法和蛋白质印迹法,研究紫杉醇及表皮生长因子(EGF)通过EGFR信号通路对A375细胞凋亡、增殖和迁移的影响。

结果

(1)细胞凋亡:紫杉醇诱导的A375细胞凋亡随浓度升高而增强(P<0.001),同时紫杉醇(0.1 μmol/L)抑制Bcl-2并增加了Bax的表达(P<0.01);EGFR抑制剂AG1478可明显增加A375细胞凋亡并增强紫杉醇的诱导效果及对Bcl-2和Bax的影响(P<0.001);EGF单独处理对A375细胞凋亡无明显影响,但其可抑制紫杉醇诱导的细胞凋亡(P<0.05)及对Bcl-2和Bax的影响(P<0.001)。(2)细胞增殖:紫杉醇(0.1 μmol/L)可显著抑制A375细胞增殖(P<0.001)且该作用可被AG1478进一步增强但被EGF减弱(P<0.001)。(3)细胞迁移:紫杉醇(0.1 μmol/L)可显著抑制A375细胞的迁移(P<0.001),该抑制作用可被AG1478进一步增强但被EGF减弱(P<0.001)。

结论

紫杉醇能够降低Bcl-2并增加Bax表达,从而诱导黑色素瘤A375细胞的凋亡并抑制其增殖和迁移,而这些抑制作用可被EGF激活的EGFR通路减弱。

Objective

To explore the mechanisms of paclitaxel on melanoma and the role of the epidermal growth factor receptor (EGFR) signaling pathway in regulating the invasion and metastasis of melanoma, and to reveal the relationship between the EGFR signaling pathway and paclitaxel resistance of melanoma cells.

Methods

Using malignant melanoma A375 cells with high EGFR expression, we utilized flow cytometry, Transwell assay, MTT, and Western blot to study the effects of paclitaxel and epidermal growth factor (EGF) on A375 cell apoptosis, proliferation, and migration.

Results

Paclitaxel induced apoptosis of A375 cells in a concentration-dependent manner (P<0.001). Meanwhile, paclitaxel (0.1 μmol/L) inhibited Bcl-2 expression and increased the expression of Bax (P<0.01). EGFR inhibitor AG1478 (20 μmol/L) could significantly increase the apoptosis of A375 cells and enhance the apoptosis-inducing effect of paclitaxel (P<0.05) and its effect on Bcl-2 and Bax expression (P<0.001). EGF treatment alone had no significant effect on the apoptosis of A375 cells, but it could inhibit the apoptosis-inducing effect of paclitaxel (0.1 μmol/L) as well as its effect on Bcl-2 and Bax (P<0.001). Paclitaxel (0.1 μmol/L) inhibited the proliferation of A375 cells (P<0.001), which could be further enhanced by AG1478 but was inhibited by EGF (P<0.001). Paclitaxel (0.1 μmol/L) inhibited the migration of A375 cells (P<0.001), which could be further enhanced by AG1478 but was decreased by EGF (P<0.001).

Conclusion

Paclitaxel can reduce Bcl-2 expression but increase the expression of Bax, thereby inducing the apoptosis of melanoma A375 cells and inhibiting their proliferation and migration. However, these inhibitory effects can be weakened by EGF via the EGFR pathway.

图1 表皮生长因子(EGF)对紫杉醇诱导的A375细胞凋亡和活性氧(ROS)积累的影响。图a为不同浓度(0.001~1 μmol/L)紫杉醇对A375细胞凋亡率的影响;图b为EGF和表皮生长因子受体(EGFR)抑制剂AG1478对A375细胞凋亡率的影响;图c为EGF和AG1478对紫杉醇诱导的A375细胞凋亡率的影响;图d、e为EGF和AG1478对紫杉醇诱导的BCl-2和Bax表达的影响;图f为EGF和AG1478对紫杉醇诱导的A375细胞ROS的影响(纵坐标为各组ROS量占阳性对照百分比)注:与Blank组相比,*P<0.05,**P<0.01,***P<0.001
图2 表皮生长因子(EGF)对紫杉醇介导的A375细胞增殖抑制作用的影响注:与Blank组比较,***P<0.001
图3 表皮生长因子(EGF)对紫杉醇介导的A375细胞迁移抑制作用的影响。图a为各组迁移细胞染色(结晶紫染色,×400);图b为各组迁移细胞数统计,结果显示EGF减弱了紫杉醇对A375细胞迁移的抑制作用注:与Blank组比较,***P<0.001
1
Leonardi GC, Falzone L, Salemi R, et al. Cutaneous melanoma: From pathogenesis to therapy (Review) [J]. Int J Oncol, 2018, 52(4): 1071-1080.
2
Boone B, Jacobs K, Ferdinande L, et al. EGFR in melanoma: clinical significance and potential therapeutic target [J]. J Cutan Pathol, 2011, 38(6): 492-502.
3
Karimkhani C, Green AC, Nijsten T, et al. The global burden of melanoma: results from the Global Burden of Disease Study 2015 [J]. Brit J Dermatol, 2017, 177(1): 134-140.
4
Gross A, Niemetz-Rahn A, Nonnenmacher A, et al. Expression and activity of EGFR in human cutaneous melanoma cell lines and influence of vemurafenib on the EGFR pathway [J]. Target Oncol, 2015, 10(1): 77-84.
5
Hartman RI, Lin JY. Cutaneous melanoma-a review in detection, staging, and management [J]. Hematol Oncol Clin North Am, 2019, 33(1): 25-38.
6
丁娅, 郭轶群, 李婧婧, 等. 白蛋白结合型紫杉醇联合铂类治疗中国晚期黑色素瘤患者的疗效与安全性评价 [J]. 中山大学学报(医学科学版), 2015, 36(5): 683-688.
7
Ben-Hamo R, Zilberberg A, Cohen H, et al. Resistance to paclitaxel is associated with a variant of the gene BCL2 in multiple tumor types [J]. NPJ Precis Onc, 2019, 3(1): 12.
8
Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis [J]. Eur J Cancer, 2001, 37 Suppl 4: S9-15.
9
王雯竹, 何艳艳, 徐浩翔. EGFR通路在相关皮肤病发病机制中的研究进展 [J]. 中国麻风皮肤病杂志, 2020, 36(11): 697-700.
10
Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy [J]. Nature, 2007, 445(7130): 851-857.
11
Pópulo H, Soares P, Lopes J M. Insights into melanoma: targeting the mTOR pathway for therapeutics [J]. Expert Opin Ther Targets, 2012, 16(7): 689-705.
12
Domingues B, Lopes JM, Soares P, et al. Melanoma treatment in review [J]. Immunotargets Ther, 2018, 7: 35-49.
13
Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma [J]. New Engl J Med, 2004, 351(10): 998-1012.
14
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019 [J]. CA Cancer J Clin, 2019, 69 (5): 363-385.
15
Wada-Ohno M, Ito T, Furue M. Adjuvant therapy for melanoma[J]. Curr Treat Options Oncol, 2019, 20(8): 63.
16
Batus M, Waheed S, Ruby C, et al. Optimal management of metastatic melanoma: current strategies and future directions [J]. Am J Clin Dermatol, 2013, 14(3): 179-194.
17
Li J, Wang Y, Liang R, et al. Recent advances in targeted nanoparticles drug delivery to melanoma [J]. Nanomedicine, 2015, 11(3): 769-794.
18
Widakowich C, de Castro G, de Azambuja E, et al. Review: side effects of approved molecular targeted therapies in solid cancers [J]. Oncologist, 2007, 12(12): 1443-1455.
19
Austin E, Mamalis A, Ho D, et al. Laser and light-based therapy for cutaneous and soft-tissue metastases of malignant melanoma: a systematic review [J]. Arch Dermatol Res, 2017, 309(4): 229-242.
20
Desai N, Trieu V, Damascelli B, et al. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients [J]. Transl Oncol, 2009, 2(2): 59-64.
21
Weaver BA. How Taxol/paclitaxel kills cancer cells [J]. Mol Biol Cell, 2014, 25(18): 2677-2681.
22
Chen X, Wang M, Hu Y, et al. Low-dose paclitaxel via hyaluronan-functionalized bovine serum albumin nanoparticulate assembly for metastatic melanoma treatment [J]. J Mater Chem B, 2020, 8(10): 2139-2147.
23
贾东东, 李涛. 重组人血管内皮抑制素联合卡铂和紫杉醇对A375黑色素瘤细胞增殖及凋亡影响 [J]. 中华肿瘤防治杂志, 2019, 26(20): 1510-1514.
24
Morgillo F, Della Corte CM, Fasano M, et al. Mechanisms of resistance to EGFR-targeted drugs: lung cancer [J]. ESMO Open, 2016, 1(3): e000060.
[1] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[2] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[3] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[4] 高秋芳, 张万锋, 盛泉音, 马彬. 足底内侧皮瓣联合腓动脉穿支皮瓣修复足跟部巨大恶性黑色素瘤切除后创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 491-497.
[5] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[6] 李雪, 韩萌萌, 冯雪园, 马宁. 人表皮生长因子受体2低表达乳腺癌的研究进展及挑战[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 308-312.
[7] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[8] 赖淼, 景鑫, 李桂珍, 李怡. 非小细胞肺癌EGFR 突变亚型的临床病理和预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 731-737.
[9] 杨静, 附舰, 康艳霞. 血浆ctDNA T790M突变和总代谢肿瘤体积对晚期EGFR突变NSCLC患者TKIs治疗及预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 379-384.
[10] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[11] 李静静, 许金花, 吴国峰, 任亚俊, 张骞云. 伏美替尼一线治疗EGFR突变晚期NSCLC脑转移的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 426-429.
[12] 刘先勇, 秦东梅, 张若梅, 李俊娇, 孟春芹, 邬明歆, 王玉红, 赵新鲜, 徐瑞联, 洪文文, 马玲, 仇玮, 周宇. Her2/Hes1在肠型胃癌Correa级联反应3个病理阶段中的表达及意义[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 321-327.
[13] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[14] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[15] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
阅读次数
全文


摘要