切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 84 -93. doi: 10.3877/cma.j.issn.1674-0785.2022.01.015

基础研究

TRPC6靶向miR-214负调控Caspase-1表达以改善肾缺血再灌注损伤的机制研究
蒲友敏1, 赵洪雯1, 申兵冰1, 周强1, 谢攀1, 吴雄飞1,()   
  1. 1. 400038 重庆,陆军军医大学第一附属医院肾科
  • 收稿日期:2021-11-05 出版日期:2022-01-15
  • 通信作者: 吴雄飞
  • 基金资助:
    国家自然科学基金项目(81570610)

TRPC6 ameliorates renal ischemic reperfusion injury by targeting miR-214 to prevent caspase-1 expression

Youmin Pu1, Hongwen Zhao1, Bingbing Shen1, Qiang Zhou1, Pan Xie1, Xiongfei Wu1,()   

  1. 1. Department of Nephrology, the First Affiliated Hospital of Army Military Medical University, Chongqing 400038, China
  • Received:2021-11-05 Published:2022-01-15
  • Corresponding author: Xiongfei Wu
引用本文:

蒲友敏, 赵洪雯, 申兵冰, 周强, 谢攀, 吴雄飞. TRPC6靶向miR-214负调控Caspase-1表达以改善肾缺血再灌注损伤的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(01): 84-93.

Youmin Pu, Hongwen Zhao, Bingbing Shen, Qiang Zhou, Pan Xie, Xiongfei Wu. TRPC6 ameliorates renal ischemic reperfusion injury by targeting miR-214 to prevent caspase-1 expression[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(01): 84-93.

目的

探讨TRPC6对肾缺血再灌注损伤(RIRI)的缓解作用及潜在作用机制。

方法

建立氧糖剥离再灌注(OGD/R HK-2)模型细胞和缺血再灌注(I/R)模型小鼠后,采用ELISA方法检测白介素(IL)-1β和IL-18水平,通过RT-qPCR、Western blot和免疫组化检测caspase-1表达,并利用CCK-8和流式细胞仪检测细胞活力和焦亡情况。此外,通过双荧光素酶报告基因检测TRPC6与miR-214之间的相互作用。

结果

TRPC6在构建的OGD/R HK-2细胞和I/R模型小鼠中表达明显升高。同时,下调caspase-1可增强OGD/R HK-2细胞的活力,抑制炎症水平和细胞焦亡。TRPC6高表达能减轻I/R模型小鼠肾损伤并且下调caspase-1水平。从机制探究,我们发现TRPC6可通过调控miR-214下调caspase-1,并改善RIRI。

结论

TRPC6通过靶向调控miR-214下调caspase-1缓解RIRI,TRPC6/miR-214/caspase-1的作用通路可能为RIRI的治疗提供关键线索。

Objective

To investigate the alleviating effect and potential mechanism of TRPC6 on renal ischemic reperfusion injury (RIRI).

Methods

After establishing oxygen-glucose deprivation/reoxygenation, OGD/R HK-2 model cells and ischemia-reperfusion (I/R) model mice, the expression levels of IL-1β and IL-18 in model cells or mice were detected by using ELISA kits, whilst the expression of caspase-1 was examined by RT-qPCR, Western blot, and immunohistochemistry. And the cell viability and pyroptosis were determined by CCK-8 assay and flow cytometry. Moreover, the interaction between TRPC6 and miR-214 was identified by dual-luciferase reporter assay.

Results

The expression of TRPC6 was observably increased in OGD/R HK-2 cells and I/R model mice. Meanwhile, down-regulation of caspase-1 enhanced the vitality of OGD/R HK-2 cells and inhibited inflammation and pyroptosis. Overexpression of TRPC6 could alleviate renal injury and down-regulate caspase-1 in I/R model mice. TRPC6 could down-regulate caspase-1 partly by regulating miR-214, thereby improving RIRI.

Conclusion

TRPC6 alleviates RIRI by targeting miR-214 to down-regulate caspase-1 expression. The TRPC6/miR-214/caspase-1 regulatory pathway may provide key clues for the therapy of RIRI.

图1 caspase-1及其下游因子IL-1β和IL-18在OGD/R HK-2细胞中显著上调(n=3)。图a和b为利用酶联免疫吸附试验(ELISA)试剂盒检测IL-1β(图a)和IL-18(图b)在OGD/R HK-2模型细胞中的表达变化;图c为caspase-1在OGD/R HK-2细胞中的表达变化注:与假手术对照组(sham)比较,*P<0.05,***P<0.001;OGD/R为氧糖剥离再灌注组;IL为白介素
图2 缺血再灌注(I/R)模型小鼠的肾损伤及caspase-1表达。图a为I/R模型小鼠的肾脏损伤情况(HE,×200);图b为I/R模型小鼠左右肾中caspase-1蛋白的表达变化(免疫组化,×200)注:与假手术对照组(sham)比较,***P<0.00
图3 caspase-1敲减对OGD/R HK-2细胞活力及焦亡的影响(n=3)。图a为实时荧光定量聚合酶链反应(RT-qPCR)检测caspase-1过表达或敲除后,OGD/R HK-2细胞中caspase-1 mRNA表达情况;图b为蛋白免疫印迹实验(WB)检测caspase-1过表达的OGD/R HK-2细胞中caspase-1蛋白表达情况;图c为WB检测caspase-1敲减的OGD/R HK-2细胞中caspase-1蛋白表达情况;图d、e为酶联免疫吸附试验(ELISA)试剂盒检测敲减caspase-1后,OGD/R HK-2细胞中白介素(IL)-1β和IL-18水平;图f为CCK-8法检测敲减caspase-1后OGD/R HK-2细胞的活力变化;图g为WB检测敲减caspase-1后OGD/R HK-2细胞中caspase-8和caspase-9表达情况注:组间比较,*P<0.05,**P<0.01,***P<0.001;OGD/R为氧糖剥离再灌注模型细胞组;OGD/R+Vector为氧糖剥离再灌注模型细胞中转染过表达质粒的空载体组;OGD/R+caspase-1为氧糖剥离再灌注模型细胞中转染caspase-1过表达质粒组;OGD/R+sh-NC氧糖剥离再灌注模型细胞中转染干扰质粒对照组;OGD/R+sh-caspase-1为氧糖剥离再灌注模型细胞中转染caspase-1干扰质粒组;Blank为空白对照组
图4 TRPC6过表达对缺血再灌注损伤(I/R)模型小鼠肾组织损伤及caspase-1和促炎细胞因子的影响(n=3)。图a为TRPC6过表达的I/R模型小鼠肾组织损伤情况(HE染色,×200);图b为TRPC6过表达的I/R模型小鼠肾组织caspase-1表达情况(免疫组化,×200);图c为蛋白免疫印迹实验(WB)检测TRPC6过表达对I/R模型小鼠caspase-1蛋白表达的影响;图d为WB检测敲减TRPC6对I/R模型小鼠caspase-1蛋白表达的影响;图e为酶联免疫吸附试验(ELISA)试剂盒检测TRPC6过表达或敲减的I/R模型小鼠血清中白介素(IL)-1β和IL-18水平注:组间比较,*P<0.05,**P<0.01,***P<0.001;sham为假手术对照组;sham+I/R为缺血再灌注模型小鼠组;I/R+Vector为缺血再灌注模型小鼠中过表达空载体组;I/R+TRPC6为缺血再灌注模型小鼠中过表达TRPC6组;I/R+sh-NC为缺血再灌注模型小鼠中干扰TRPC6对照组;I/R+sh-TRPC6为缺血再灌注模型小鼠中干扰TRPC6组
图5 TRPC6介导miR-214对氧糖剥离模型细胞中caspase-1的表达调控(n=3)。图a、b为在用转染sh-TRPC6或TRPC6过表达质粒后,通过实时荧光定量聚合酶链反应(RT-qPCR)评估OGD/R HK-2细胞中miR-181和miR-214的表达;图c为通过双荧光素酶报告基因实验检测miR-181和miR-214对TRPC6的转录调控作用;图d、e分别为应用RT-qPCR(图d)和蛋白免疫印迹实验(WB)(图e)检测miR-214对OGD/R HK-2细胞中caspase-1表达的负调控作用注:组间比较,*P<0.05,**P<0.01,***P<0.001;OGD/R为氧糖剥离再灌注模型细胞组;OGD/R+sh-TRPC6为氧糖剥离再灌注模型细胞中干扰TRPC6组;OGD/R+TRPC6为氧糖剥离再灌注模型细胞中过表达TPRC6组;Blank为空白对照组;miR-214 mimics为miR-214模拟物处理组;miR-214 inhibitor为miR-214抑制物处理组;NC mimics为miRNA模拟物对照组;NC inhibitor为miRNA抑制物对照组;miR-181 mimics为miR-181模拟物处理组;miR-181 inhibitor为miR-181抑制物处理组;OGD/R+NC为氧糖剥离再灌注模型细胞中转染miR-214阴性对照组;OGD/R+miR-214为氧糖剥离再灌注模型细胞中转染miR-214组
图6 TRPC6通过靶向miR-214有效地诱导了OGD/R HK-2细胞的活力并抑制了炎症和细胞焦亡(n=3)。图a为酶联免疫吸附试验(ELISA)试剂盒检测TRPC6和miR214对OGD/R HK-2细胞中白介素(IL)-1β和IL-18水平的影响;图b为CCK-8法检测TRPC6和miR214对OGD/R HK-2细胞活力的影响;图c为流式细胞仪测定TRPC6和miR214对OGD/R HK-2细胞焦亡的影响注:组间比较,*P<0.05,**P<0.01,***P<0.001;sham为假手术对照组;OGD/R为氧糖剥离再灌注模型细胞组;OGD/R+sh-TRPC6为氧糖剥离再灌注组模型细胞中干扰TPRC6组;OGD/R+sh-TRPC6+mimics为氧糖剥离再灌注组模型细胞中干扰TPRC6后miR-214模拟物处理组;OGD/R+TRPC6为氧糖剥离再灌注组模型细胞中过表达TPRC6组;OGD/R+TRPC6+inhibitor为氧糖剥离再灌注组模型细胞中过表达TPRC6后miR-214抑制物处理组
1
Wu MY, Yiang GT, Liao WT, et al. Current mechanistic concepts in ischemia and reperfusion injury [J]. Cell Physiol Biochem, 2018, 46(4): 1650-1667.
2
Kezic A, Stajic N, Thaiss F. Innate immune response in kidney ischemia/reperfusion injury: potential target for therapy [J]. J Immunol Res, 2017, 2017: 6305439.
3
Gholampour F, Bagheri A, Barati A, et al. Remote ischemic perconditioning modulates apelin expression after renal ischemia-reperfusion injury [J]. J Surg Res, 2020, 247: 429-437.
4
Jun W, Benjanuwattra J, Chattipakorn S C, et al. Necroptosis in renal ischemia/reperfusion injury: A major mode of cell death? [J]. Arch Biochem Biophys, 2020, 689: 108433.
5
Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment [J]. J Renal Inj Prev, 2015, 4(2): 20-27.
6
Shiva N, Sharma N, Kulkarni YA, et al. Renal ischemia/reperfusion injury: an insight on in vitro and in vivo models [J]. Life Sci, 2020, 256: 117860.
7
Dietrich A, Gudermann T. Trpc6 [J]. Handb Exp Pharmacol, 2007, 179: 125-141.
8
Dietrich A, Gudermann T. TRPC6: physiological function and pathophysiological relevance [J]. Handb Exp Pharmacol, 2014, 222: 157-188.
9
Farmer LK, Rollason R, Whitcomb DJ, et al. TRPC6 binds to and activates calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility [J]. J Am Soc Nephrol, 2019, 30(10): 1910-1924.
10
Tang Q, Guo W, Zheng L, et al. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels [J]. Cell Res, 2018, 28(7): 746-755.
11
Lin BL, Matera D, Doerner JF, et al. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease [J]. Proc Natl Acad Sci U S A, 2019, 116(20): 10156-10161.
12
Staruschenko A, Spires D, Palygin O. Role of TRPC6 in progression of diabetic kidney disease [J]. Curr Hypertens Rep, 2019, 21(7): 48.
13
Zhang H, Ding J, Fan Q, et al. TRPC6 up-regulation in Ang II-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation [J]. Exp Biol Med (Maywood), 2009, 234(9): 1029-1036.
14
Denby L, Ramdas V, McBride MW, et al. miR-21 and miR-214 are consistently modulated during renal injury in rodent models [J]. Am J Pathol, 2011, 179(2): 661-672.
15
Jin X, Jin H, Shi Y, et al. Long non-coding RNA KCNQ1OT1 promotes cataractogenesis via miR-214 and activation of the caspase-1 pathway [J]. Cell Physiol Biochem, 2017, 42(1): 295-305.
16
Hou J, Hsu JM, Hung MC. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity [J]. Mol Cell, 2021, 81(22): 4579-4590.
17
Diao C, Chen Z, Qiu T, et al. Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury [J]. Oxid Med Cell Longev, 2019, 2019: 2345658.
18
Wei S, Tong J, Xue Q, et al. Effect of puerarin on transcriptome of astrocyte during oxygen-glucose deprivation/reoxygenation injury [J]. Mol Cell Biochem, 2017, 425(1-2): 113-123.
19
Smith SF, Hosgood SA, Nicholson ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells [J]. Kidney Int, 2019, 95(1): 50-56.
20
Pefanis A, Ierino FL, Murphy JM, et al. Regulated necrosis in kidney ischemia-reperfusion injury [J]. Kidney Int, 2019, 96(2): 291-301.
21
Panah F, Ghorbanihaghjo A, Argani H, et al. Ischemic acute kidney injury and klotho in renal transplantation [J]. Clin Biochem, 2018, 55: 3-8.
22
Liu BC, Tang TT, Lv LL. How tubular epithelial cell injury contributes to renal fibrosis [J]. Adv Exp Med Biol, 2019, 1165: 233-252.
23
Zhao A, Kong F, Liu CJ, et al. Tumor cell-derived microvesicles induced not epithelial-mesenchymal transition but apoptosis in human proximal tubular (HK-2) cells: implications for renal impairment in multiple myeloma [J]. Int J Mol Sci, 2017, 18(3): 513.
24
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death [J]. Trends Biochem Sci, 2017, 42(4): 245-254.
25
Fang Y, Tian S, Pan Y, et al. Pyroptosis: A new frontier in cancer [J]. Biomed Pharmacother, 2020, 121: 109595.
26
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk [J]. Cell Death Differ, 2019, 26(1): 99-114.
27
Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis [J]. Annu Rev Immunol, 2020, 38: 567-595.
28
Sun L, Ma W, Gao W, et al. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome [J]. Cell Death Dis, 2019, 10(8): 542.
29
McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis [J]. Proc Natl Acad Sci U S A, 2018, 115(26): E6065-E6074.
30
Wang X, Wang W, Wang JZ, et al. Effect of apigenin on apoptosis induced by renal ischemia/reperfusion injury in vivo and in vitro [J]. Ren Fail, 2018, 40(1): 498-505.
31
Xu X, Lai Y, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials [J]. Biosci Rep, 2019, 39(1): BSR20180992.
32
Aral K, Aral CA, Kapila Y. The role of caspase-8, caspase-9, and apoptosis inducing factor in periodontal disease [J]. J Periodontol, 2019, 90(3): 288-294.
33
Imao T, Nagata S. Apaf-1- and Caspase-8-independent apoptosis [J]. Cell Death Differ, 2013, 20(2): 343-352.
34
Xu C, Gamil AAA, Munang'andu HM, et al. Apoptosis induction by dsRNA-dependent protein kinase R (PKR) in EPC cells via caspase 8 and 9 pathways [J]. Viruses, 2018, 10(10): 526.
35
Podgorski P, Konieczny A, Lis L, et al. Glomerular podocytes in diabetic renal disease [J]. Adv Clin Exp Med, 2019, 28(12): 1711-1715.
36
Haraldsson B, Jeansson M. Glomerular filtration barrier [J]. Curr Opin Nephrol Hypertens, 2009, 18(4): 331-335.
37
Hall G, Wang L, Spurney RF. TRPC channels in proteinuric kidney diseases [J]. Cells, 2019, 9(1): 44.
38
Yu H, Kistler A, Faridi MH, et al. Synaptopodin limits TRPC6 podocyte surface expression and attenuates proteinuria [J]. J Am Soc Nephrol, 2016, 27(11): 3308-3319.
39
Shen B, He Y, Zhou S, et al. TRPC6 may protect renal ischemia-reperfusion injury through inhibiting necroptosis of renal tubular epithelial cells [J]. Med Sci Monit, 2016, 22: 633-641.
40
Zhao B, Yang H, Zhang R, et al. The role of TRPC6 in oxidative stress-induced podocyte ischemic injury [J]. Biochem Biophys Res Commun, 2015, 461(2): 413-420.
41
Hou X, Huang M, Zeng X, et al. The role of TRPC6 in renal ischemia/reperfusion and cellular hypoxia/reoxygenation injuries [J]. Front Mol Biosci, 2021, 8: 698975.
42
Tafrihi M, Hasheminasab E. MiRNAs: biology, biogenesis, their web-based tools, and databases [J]. Microrna, 2019, 8(1): 4-27.
43
Tang QQ, Qiao XG, Wang F, et al. MiR-29 promotes ovarian carcinoma cell proliferation through the PTEN pathway [J]. Eur J Gynaecol Oncol, 2020, 41(5): 774-778.
44
Wang R, Zhao H, Zhang Y, et al. Identification of microRNA-92a-3p as an essential regulator of tubular epithelial cell pyroptosis by targeting Nrf1 via HO-1 [J]. Front Genet, 2020, 11: 616947.
45
Wu H, Huang T, Ying L, et al. MiR-155 is Involved in renal ischemia-reperfusion injury via direct targeting of foxo3a and regulating renal tubular cell pyroptosis [J]. Cell Physiol Biochem, 2016, 40(6): 1692-1705.
[1] 马尧, 杨明义, 许珂, 郝博, 许鹏. 细胞焦亡与类风湿性关节炎的相关研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(05): 586-591.
[2] 蒲娇, 龚忠诚. 细胞焦亡在糖尿病牙周炎中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 189-192.
[3] 明锐, 姜淮芜, 陈进, 周航宇, 肖国. miR-214和miR-181c在胃癌组织中的表达及预后价值[J]. 中华普通外科学文献(电子版), 2020, 14(06): 416-420.
[4] 廖欣, 顾一平, 廖薇. 低强度超声对HeLa肿瘤细胞凋亡的诱导作用及其机制[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(05): 277-282.
[5] 迟坤, 付章宁, 宋成成, 耿晓东, 刘超, 蔡广研, 陈香美, 洪权. 高尿酸通过TXNIP/NLRP3通路导致内皮细胞焦亡[J]. 中华肾病研究电子杂志, 2021, 10(02): 81-89.
[6] 彭菲, 常炜, 杨毅. 非经典途径细胞焦亡在脓毒症中的研究进展[J]. 中华重症医学电子杂志, 2019, 05(01): 46-50.
[7] 阳泽宇, 杨霞, 王嘉伟, 谭兴领, 张敏敏, 宁宗. GSDMD依赖性细胞焦亡在毒蛇咬伤患者中的表达[J]. 中华临床医师杂志(电子版), 2021, 15(03): 187-190.
阅读次数
全文


摘要