1 |
Wu MY, Yiang GT, Liao WT, et al. Current mechanistic concepts in ischemia and reperfusion injury [J]. Cell Physiol Biochem, 2018, 46(4): 1650-1667.
|
2 |
Kezic A, Stajic N, Thaiss F. Innate immune response in kidney ischemia/reperfusion injury: potential target for therapy [J]. J Immunol Res, 2017, 2017: 6305439.
|
3 |
Gholampour F, Bagheri A, Barati A, et al. Remote ischemic perconditioning modulates apelin expression after renal ischemia-reperfusion injury [J]. J Surg Res, 2020, 247: 429-437.
|
4 |
Jun W, Benjanuwattra J, Chattipakorn S C, et al. Necroptosis in renal ischemia/reperfusion injury: A major mode of cell death? [J]. Arch Biochem Biophys, 2020, 689: 108433.
|
5 |
Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment [J]. J Renal Inj Prev, 2015, 4(2): 20-27.
|
6 |
Shiva N, Sharma N, Kulkarni YA, et al. Renal ischemia/reperfusion injury: an insight on in vitro and in vivo models [J]. Life Sci, 2020, 256: 117860.
|
7 |
Dietrich A, Gudermann T. Trpc6 [J]. Handb Exp Pharmacol, 2007, 179: 125-141.
|
8 |
Dietrich A, Gudermann T. TRPC6: physiological function and pathophysiological relevance [J]. Handb Exp Pharmacol, 2014, 222: 157-188.
|
9 |
Farmer LK, Rollason R, Whitcomb DJ, et al. TRPC6 binds to and activates calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility [J]. J Am Soc Nephrol, 2019, 30(10): 1910-1924.
|
10 |
Tang Q, Guo W, Zheng L, et al. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels [J]. Cell Res, 2018, 28(7): 746-755.
|
11 |
Lin BL, Matera D, Doerner JF, et al. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease [J]. Proc Natl Acad Sci U S A, 2019, 116(20): 10156-10161.
|
12 |
Staruschenko A, Spires D, Palygin O. Role of TRPC6 in progression of diabetic kidney disease [J]. Curr Hypertens Rep, 2019, 21(7): 48.
|
13 |
Zhang H, Ding J, Fan Q, et al. TRPC6 up-regulation in Ang II-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation [J]. Exp Biol Med (Maywood), 2009, 234(9): 1029-1036.
|
14 |
Denby L, Ramdas V, McBride MW, et al. miR-21 and miR-214 are consistently modulated during renal injury in rodent models [J]. Am J Pathol, 2011, 179(2): 661-672.
|
15 |
Jin X, Jin H, Shi Y, et al. Long non-coding RNA KCNQ1OT1 promotes cataractogenesis via miR-214 and activation of the caspase-1 pathway [J]. Cell Physiol Biochem, 2017, 42(1): 295-305.
|
16 |
Hou J, Hsu JM, Hung MC. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity [J]. Mol Cell, 2021, 81(22): 4579-4590.
|
17 |
Diao C, Chen Z, Qiu T, et al. Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury [J]. Oxid Med Cell Longev, 2019, 2019: 2345658.
|
18 |
Wei S, Tong J, Xue Q, et al. Effect of puerarin on transcriptome of astrocyte during oxygen-glucose deprivation/reoxygenation injury [J]. Mol Cell Biochem, 2017, 425(1-2): 113-123.
|
19 |
Smith SF, Hosgood SA, Nicholson ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells [J]. Kidney Int, 2019, 95(1): 50-56.
|
20 |
Pefanis A, Ierino FL, Murphy JM, et al. Regulated necrosis in kidney ischemia-reperfusion injury [J]. Kidney Int, 2019, 96(2): 291-301.
|
21 |
Panah F, Ghorbanihaghjo A, Argani H, et al. Ischemic acute kidney injury and klotho in renal transplantation [J]. Clin Biochem, 2018, 55: 3-8.
|
22 |
Liu BC, Tang TT, Lv LL. How tubular epithelial cell injury contributes to renal fibrosis [J]. Adv Exp Med Biol, 2019, 1165: 233-252.
|
23 |
Zhao A, Kong F, Liu CJ, et al. Tumor cell-derived microvesicles induced not epithelial-mesenchymal transition but apoptosis in human proximal tubular (HK-2) cells: implications for renal impairment in multiple myeloma [J]. Int J Mol Sci, 2017, 18(3): 513.
|
24 |
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death [J]. Trends Biochem Sci, 2017, 42(4): 245-254.
|
25 |
Fang Y, Tian S, Pan Y, et al. Pyroptosis: A new frontier in cancer [J]. Biomed Pharmacother, 2020, 121: 109595.
|
26 |
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk [J]. Cell Death Differ, 2019, 26(1): 99-114.
|
27 |
Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis [J]. Annu Rev Immunol, 2020, 38: 567-595.
|
28 |
Sun L, Ma W, Gao W, et al. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome [J]. Cell Death Dis, 2019, 10(8): 542.
|
29 |
McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis [J]. Proc Natl Acad Sci U S A, 2018, 115(26): E6065-E6074.
|
30 |
Wang X, Wang W, Wang JZ, et al. Effect of apigenin on apoptosis induced by renal ischemia/reperfusion injury in vivo and in vitro [J]. Ren Fail, 2018, 40(1): 498-505.
|
31 |
Xu X, Lai Y, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials [J]. Biosci Rep, 2019, 39(1): BSR20180992.
|
32 |
Aral K, Aral CA, Kapila Y. The role of caspase-8, caspase-9, and apoptosis inducing factor in periodontal disease [J]. J Periodontol, 2019, 90(3): 288-294.
|
33 |
Imao T, Nagata S. Apaf-1- and Caspase-8-independent apoptosis [J]. Cell Death Differ, 2013, 20(2): 343-352.
|
34 |
Xu C, Gamil AAA, Munang'andu HM, et al. Apoptosis induction by dsRNA-dependent protein kinase R (PKR) in EPC cells via caspase 8 and 9 pathways [J]. Viruses, 2018, 10(10): 526.
|
35 |
Podgorski P, Konieczny A, Lis L, et al. Glomerular podocytes in diabetic renal disease [J]. Adv Clin Exp Med, 2019, 28(12): 1711-1715.
|
36 |
Haraldsson B, Jeansson M. Glomerular filtration barrier [J]. Curr Opin Nephrol Hypertens, 2009, 18(4): 331-335.
|
37 |
Hall G, Wang L, Spurney RF. TRPC channels in proteinuric kidney diseases [J]. Cells, 2019, 9(1): 44.
|
38 |
Yu H, Kistler A, Faridi MH, et al. Synaptopodin limits TRPC6 podocyte surface expression and attenuates proteinuria [J]. J Am Soc Nephrol, 2016, 27(11): 3308-3319.
|
39 |
Shen B, He Y, Zhou S, et al. TRPC6 may protect renal ischemia-reperfusion injury through inhibiting necroptosis of renal tubular epithelial cells [J]. Med Sci Monit, 2016, 22: 633-641.
|
40 |
Zhao B, Yang H, Zhang R, et al. The role of TRPC6 in oxidative stress-induced podocyte ischemic injury [J]. Biochem Biophys Res Commun, 2015, 461(2): 413-420.
|
41 |
Hou X, Huang M, Zeng X, et al. The role of TRPC6 in renal ischemia/reperfusion and cellular hypoxia/reoxygenation injuries [J]. Front Mol Biosci, 2021, 8: 698975.
|
42 |
Tafrihi M, Hasheminasab E. MiRNAs: biology, biogenesis, their web-based tools, and databases [J]. Microrna, 2019, 8(1): 4-27.
|
43 |
Tang QQ, Qiao XG, Wang F, et al. MiR-29 promotes ovarian carcinoma cell proliferation through the PTEN pathway [J]. Eur J Gynaecol Oncol, 2020, 41(5): 774-778.
|
44 |
Wang R, Zhao H, Zhang Y, et al. Identification of microRNA-92a-3p as an essential regulator of tubular epithelial cell pyroptosis by targeting Nrf1 via HO-1 [J]. Front Genet, 2020, 11: 616947.
|
45 |
Wu H, Huang T, Ying L, et al. MiR-155 is Involved in renal ischemia-reperfusion injury via direct targeting of foxo3a and regulating renal tubular cell pyroptosis [J]. Cell Physiol Biochem, 2016, 40(6): 1692-1705.
|