切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 112 -123. doi: 10.3877/cma.j.issn.1674-0785.2022.02.002

临床研究

运用生物信息学方法分析RAS通路中相关基因与宫颈癌转移之间关系的研究
黄巧巧1, 陈军莹1,(), 黄锦冰1, 徐文生1, 陈二玲1   
  1. 1. 530021 南宁,广西医科大学第一附属医院妇产科
  • 收稿日期:2021-09-06 出版日期:2022-02-15
  • 通信作者: 陈军莹
  • 基金资助:
    国家自然科学基金地区项目(81860457); 中国博士后科学基金面上项目(2019M663411); 广西自然科学基金面上项目(2017GXNSFAA198106); 广西医疗卫生适宜技术开发与推广应用项目(S2018107)

Analysis of relationship between RAS pathway related genes and cervical cancer metastasis using bioinformatics methods

Qiaoqiao Huang1, Junying Chen1(), Jinbing Huang1, Wensheng Xu1, Erling Chen1   

  1. 1. Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
  • Received:2021-09-06 Published:2022-02-15
  • Corresponding author: Junying Chen
引用本文:

黄巧巧, 陈军莹, 黄锦冰, 徐文生, 陈二玲. 运用生物信息学方法分析RAS通路中相关基因与宫颈癌转移之间关系的研究[J]. 中华临床医师杂志(电子版), 2022, 16(02): 112-123.

Qiaoqiao Huang, Junying Chen, Jinbing Huang, Wensheng Xu, Erling Chen. Analysis of relationship between RAS pathway related genes and cervical cancer metastasis using bioinformatics methods[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(02): 112-123.

目的

探究与宫颈癌发展密切相关的信号通路关键分子,运用生物信息学方法来分析RAS蛋白信号通路与宫颈癌转移之间关系。

方法

分析受miR-3162-5p调控的信号通路,选出与宫颈癌发展相关的高分通路,运用Oncomine检索通路中的基因在宫颈癌中的表达情况,筛选出差异表达基因,利用STRING和Cytoscape构建了蛋白质-蛋白质相互作用网络(PPI)和模块分析。

结果

本研究运用生物信息学方法共筛选出了77个差异表达基因,包括31个高表达基因、42个低表达基因和4个有不同表达趋势的基因。从其中鉴定出24个关键基因,生存分析表明,非受体蛋白酪氨酸磷酸酶11型(PTPN11)、血管内皮生长因子A(VEGFA)、胰岛素样生长因子1(IGF1)、成纤维细胞生长因子受体2(FGFR2)、G蛋白亚单位γ7(GNG7)和原癌基因KIT配体(KITLG)可能参与宫颈癌的发生发展、侵袭或复发。免疫组织化学结果提示PTPN11在宫颈癌组织和宫颈非癌上皮中表达差异,差异具有统计学意义(P<0.05)。

结论

本研究中发现的差异基因和关键基因有助于了解宫颈癌发生和发展的分子机制,并为宫颈癌的诊断和治疗提供候选靶点。

Objective

To analyze the relationship between the Ras signaling pathway and cervical cancer metastasis using bioinformatics methods, in order to explore the key molecules of signal pathways closely related to the development of cervical cancer.

Methods

The signaling pathways regulated by miR-3162-5p were analyzed and high-scoring pathways related to the development of cervical cancer were selected. Oncomine was used to retrieve the expression of genes in the pathway in cervical cancer, and the differentially expressed genes were screened out. Protein-protein interaction network (PPI) and module analysis were constructed using STRING and Cytoscape.

Results

A total of 77 differentially expressed genes were screened by bioinformatics methods, including 31 highly expressed genes, 42 lowly expressed genes, and 4 genes with different expression trends. Among them, 24 key genes were identified. Survival analysis showed that protein tyrosine phosphatase non-receptor type 11 (PTPN11), vascular endothelial growth factor A (VEGFA), insulin like growth factor 1 (IGF1), fibroblast growth factor receptor 2 (FGFR2), G protein subunit gamma 7 (GNG7), and KIT ligand (KITLG) may be involved in the occurrence, development, invasion, and recurrence of cervical cancer. The results of immunohistochemistry suggested that PTPN11 was expressed differentially between cervical cancer tissue and cervical non-cancerous epithelium, and the difference was statistically significant (P<0.05).

Conclusion

The differential genes and key genes identified in this study are helpful to understand the molecular mechanism of cervical cancer occurrence and development, and provide candidate targets for the diagnosis and treatment of this malignancy.

表1 受miR-3162-5p调控的高分信号通路
表2 通过Oncomine数据库筛选出的差异基因
图1 用Cytoscape可视化软件构建的PPI网络图注:红色标记为高表达基因;蓝色标记为低表达基因;粉色标记为不同的表达趋势;节点越大,表示基因在网络中与其他基因相关的可信度越高
图2 用Cytoscape可视化软件构建的24个关键基因的网络图注:红色标记为高表达基因;蓝色标记为低表达基因;节点越大,表示基因在网络中与其他基因相关的可信度越高
表3 关键基因GO分析和KEGG通路富集结果
表4 关键基因中英文名称及英文缩写
基因名称 英文全称 中文名称
GNG7 G protein subunit gamma 7 G蛋白亚基γ7
GNG11 G protein subunit gamma 11 G蛋白亚基γ11
FGF7 fibroblast growth factor 7 成纤维细胞生长因子7
PDGFRB platelet derived growth factor receptor beta 血小板源性生长因子受体β
FGF22 fibroblast growth factor 22 成纤维细胞生长因子22
FGFR1 fibroblast growth factor receptor 1 成纤维细胞生长因子受体1
FGF2 fibroblast growth factor 2 成纤维细胞生长因子2
PIK3R1 phosphoinositide-3-kinase regulatory subunit 1 磷酸肌醇-3-激酶调节亚基1
IGF1 insulin like growth factor 1 胰岛素样生长因子1
FLT1 fms related tyrosine kinase 1 fms相关的酪氨酸激酶1
FGFR2 fibroblast growth factor receptor 2 成纤维细胞生长因子受体2
FGF1 fibroblast growth factor 1 成纤维细胞生长因子1
KIT KIT proto-oncogene receptor tyrosine kinase KIT原癌基因受体酪氨酸激酶
KITLG KIT ligand KIT配体
GAB1 GRB2 associated binding protein 1 GRB2相关结合蛋白1
PTPN11 protein tyrosine phosphatase,non-receptor type 11 非受体蛋白酪氨酸磷酸酶11型
GNB5 G protein subunit beta 5 G蛋白亚基5
IGF1R insulin like growth factor 1 receptor 胰岛素样生长因子1受体
MAPK1 mitogen-activated protein kinase 1 丝裂原活化蛋白激酶1
GNG5 G protein subunit gamma 5 G蛋白亚基γ5
AKT1 AKT serine/threonine kinase 1 AKT丝氨酸/苏氨酸激酶1
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 磷脂酰肌醇-4,5-二磷酸3-激酶催化亚基
AKT3 AKT serine/threonine kinase 3 AKT丝氨酸/苏氨酸激酶3
VEGFA vascular endothelial growth factor A 血管内皮生长因子A
图3 24个关键基因的蛋白相互作用网络注:用cBioPortal分析的24个关键基因及其共表达基因。黑体轮廓的节点代表枢纽基因;黑色轮廓的节点代表共同表达的基因
图4 关键基因差异表达在宫颈癌中的生存分析图。图a为关键基因差异表达在宫颈癌中总体生存率;图b为关键基因差异表达在宫颈癌中无病生存率
图5 GEPIA在线平台检索关键基因与宫颈癌EMT的相关关系图注:GEPIA为基因表达谱交互分析;EMT为肿瘤细胞上皮-间质化;CDH1为钙粘蛋白1;CDH2为钙粘蛋白2;SNAI2为蜗牛家族转录抑制因子2;TPM为相关基因被另一基因标准化,数据库使用非对数标度进行计算,使用对数标度轴进行可视化
图6 免疫组织化学结果(×200)。图a~c为宫颈癌组织中的染色结果,图a为PTPN11(n=17);图b为GNG11(n=14);图c为VEGFA(n=15);图d~f为正常宫颈组织中的染色结果,图d为PTPN11(n=3);图e为GNG11(n=3);图f为VEGFA(n=3)
1
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6):394-424.
2
Wang T, Wu MH, Wu YM, et al. A population-based study of invasive cervical cancer patients in Beijing: 1993-2008 [J]. Chin Med J (Engl), 2015, 128(24): 3298-3304.
3
Shi WJ, Liu H, Wu D, et al. E6/E7 proteins are potential markers for the screening and diagnosis of cervical pre-cancerous lesions and cervical cancer in a Chinese population [J]. Oncol Lett, 2017, 14(5): 6251-6258.
4
Ayala-Calvillo E, Mojica-Vázquez LH, García-Carrancá A, et al. Wnt/β-catenin pathway activation and silencing of the APC gene in HPV-positive human cervical cancer-derived cells [J]. Mol Med Rep, 2018, 17(1): 200-208.
5
Yoshimatsu Y, Nakahara T, Tanaka K, et al. Roles of the PDZ-binding motif of HPV 16 E6 protein in oncogenic transformation of human cervical keratinocytes [J]. Cancer Sci, 2017, 108(7): 1303-1309.
6
陈军莹, 姚德生, 贺婵娟, 等. 宫颈鳞癌MicroRNA差异表达的研究 [J]. 实用医学杂志, 2014, 30(1): 83-87.
7
Chen J, Yao D, Zhao S, et al. MiR-1246 promotes SiHa cervical cancer cell proliferation, invasion, and migration through suppression of its target gene thrombospondin 2 [J]. Arch Gynecol Obstet, 2014, 290(4): 725-732.
8
陈军莹, 姚德生, 李悦等. 早期子宫颈鳞癌伴淋巴结转移患者癌组织中差异微小RNA的表达 [J]. 中华妇产科杂志,2014, 49(3): 226-228.
9
Stiasny A, Kuhn C, Mayr D, et al. Immunohistochemical evaluation of E6/E7 HPV oncoproteins staining in cervical cancer [J]. Anticancer Res, 2016, 36(6): 3195-3198.
10
Golden RJ, Chen B, Li T, et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing [J]. Nature, 2017, 542(7640): 197-202.
11
Gorbea C, Mosbruger T, Cazalla D. A viral Sm-class RNA base-pairs with mRNAs and recruits microRNAs to inhibit apoptosis [J]. Nature, 2017, 550(7675): 275-279.
12
Han CW, Jeong MS, Jang SB. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway [J]. Biochem Biophys Res Commun, 2017, 491(2): 257-264.
13
Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo [J]. Biochem Soc Trans, 2017, 45(1): 27-36.
14
Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance [J]. J Cell Sci, 2016, 129(7): 1287-1292.
15
Basu SK, Lee S, Salotti J, et al. Oncogenic RAS-induced perinuclear signaling complexes requiring KSR1 regulate signal transmission to downstream targets [J]. Cancer Res, 2018, 78(4): 891-908.
16
Delire B, Stärkel P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications [J]. Eur J Clin Invest, 2015, 45(6): 609-623.
17
Ritt DA, Abreu-Blanco MT, Bindu L, et al. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit [J]. Mol Cell, 2016, 64(5): 875-887.
18
Hu YC, Wang AM, Lu JK, et al. Long noncoding RNA HOXD-AS1 regulates proliferation of cervical cancer cells by activating Ras/ERK signaling pathway [J]. Eur Rev Med Pharmacol Sci, 2017, 21(22): 5049-5055.
19
Wu Y, Gu TT, Zheng PS. CIP2A cooperates with H-Ras to promote epithelial-mesenchymal transition in cervical-cancer progression [J]. Cancer Lett, 2015, 356(2 Pt B): 646-655.
20
Zou Y, Liu FY, Wu J, et al. Mutational analysis of the RAS/RAF/MEK/ERK signaling pathway in 260 Han Chinese patients with cervical carcinoma [J]. Oncol Lett, 2017, 14(2): 2427-2431.
21
Wang Z, Liu Z, Fang X, et al. MiR-142-5p suppresses tumorigenesis by targeting PIK3CA in non-small cell lung cancer [J]. Cell Physiol Biochem, 2017, 43(6): 2505-2515.
22
Xu JM, Wang Y, Wang YL, et al. PIK3CA mutations contribute to acquired cetuximab resistance in patients with metastatic colorectal cancer [J]. Clin Cancer Res, 2017, 23(16): 4602-4616.
23
Keegan NM, Gleeson JP, Hennessy BT, et al. PI3K inhibition to overcome endocrine resistance in breast cancer [J]. Expert Opin Investig Drugs, 2018, 27(1): 1-15.
24
Chung TKH, Cheung TH, Yim SF, et al. Liquid biopsy of PIK3CA mutations in cervical cancer in Hong Kong Chinese women [J]. Gynecol Oncol, 2017, 146(2): 334-339.
25
Zhao H, Martin E, Matalkah F, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis [J]. Oncogene, 2018, 38(13):2275-2290.
26
Hill KS, Roberts ER, Wang X, et al. PTPN11 plays oncogenic roles and is a therapeutic target for BRAF wild-type melanomas [J]. Mol Cancer Res, 2018, 17(2):583-593.
27
Bejar R. What biologic factors predict for transformation to AML? [J] Best Pract Res Clin Haematol, 2018, 31(4): 341-345.
28
Mainardi S, Mulero-Sánchez A, Prahallad A, et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo [J]. Nat Med, 2018, 24(7): 961-967.
29
Coulombe G, Rivard N. New and unexpected biological functions for the src-homology 2 domain-containing phosphatase SHP-2 in the gastrointestinal tract [J]. Cell Mol Gastroenterol Hepatol, 2016, 2(1): 11-21.
30
Xiang D, Cheng Z, Liu H, et al. Shp2 promotes liver cancer stem cell expansion by augmenting β-catenin signaling and predicts chemotherapeutic response of patients [J]. Hepatology, 2017, 65(5): 1566-1580.
31
Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer [J]. J Cell Mol Med, 2015, 19(9): 2075-2083.
32
Fedele C, Ran H, Diskin B, et al. SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models [J]. Cancer Discov, 2018, 8(10): 1237-1249.
33
Xie J, Si X, Gu S, et al. Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment [J]. J Med Chem, 2017, 60(24): 10205-10219.
34
Yan D, Zhu D, Zhao X, Su J. SHP-2 restricts apoptosis induced by chemotherapeutic agents via Parkin-dependent autophagy in cervical cancer [J]. Cancer Cell Int, 2018, 15(18): 8.
35
Liu JJ, Li Y, Chen WS, et al. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET [J]. J Hepatol, 2018, 69(1): 79-88.
36
Aiello NM, Brabletz T, Kang Y, et al. Upholding a role for EMT in pancreatic cancer metastasis [J]. Nature, 2017, 547(7661): E7-E8.
37
Li XW, Tuergan M, Abulizi G. Expression of MAPK1 in cervical cancer and effect of MAPK1 gene silencing on epithelial-mesenchymal transition, invasion and metastasis [J]. Asian Pac J Trop Med, 2015, 8(11): 937-943.
38
Li W, Liang J, Zhang Z, et al. MicroRNA-329-3p targets MAPK1 to suppress cell proliferation, migration and invasion in cervical cancer [J]. Oncol Rep, 2017, 37(5): 2743-2750.
39
Chen B, Zhang C, Dong P, et al. Molecular regulation of cervical cancer growth and invasion by VEGFa [J]. Tumour Biol, 2014, 35(11): 11587-11593.
40
Sablania P, Batra S, Saxena A. Insulin-like growth factor I receptor (IGF-IR) ligands and BMI in squamous intra-epithelial lesion (SIL) of cervix [J]. J Clin Diagn Res, 2016, 10(2): BC11-5.
41
Roszik J, Ring KL, Wani KM, et al. Gene expression analysis identifies novel targets for cervical cancer therapy [J]. Front Immunol, 2018, 9: 2102.
[1] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[2] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[3] 田飞, 高颂, 李铮, 王颖慧, 王媛媛. 1989至2020年北京市东城区1 076例人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者生存时间及影响因素[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(02): 100-107.
[4] 李佳隆, 韩青雷, 宋铭杰, 古丽米拉·亚森江, 钟锴, 蒋铁民, 郭强, 吐尔干艾力·阿吉, 邵英梅. Bismuth-Corlette Ⅱ型肝门部胆管癌行扩大肝切除与围肝门切除的临床疗效分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 438-443.
[5] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[6] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[7] 孙翀, 徐成臣, 王辉, 谢应海, 王琦. 蛋白磷酸酶1G在肝细胞癌中的表达及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 449-453.
[8] 孟泓宇, 卢逸, 曹彦龙, 戴操, 杨佳伟, 林楠, 徐见亮. 基于PSM比较TACE联合射频消融与单纯射频消融治疗小肝癌疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 417-421.
[9] 于小鹏, 陈晨, 陈家璐, 童焕军, 邱应和, 吴泓, 宋天强, 何宇, 毛先海, 翟文龙, 程张军, 李敬东, 耿智敏, 汤朝晖. 肝内胆管细胞癌淋巴结清扫患者生存获益的术前临床病理特征[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 278-283.
[10] 陈保荣, 李玺, 王佳妮, 潘宇航. INHBA在肝细胞癌中的表达及临床意义[J]. 中华肝脏外科手术学电子杂志, 2022, 11(05): 519-523.
[11] 管子龙, 王玉柳明, 胡汉卿, 张浩, 李正梁, 徐超, 罗康佳, 欧苏文, 郁雷, 汤庆超, 黄睿, 王贵玉. 经自然腔道取标本手术与常规腹腔镜手术在左半结肠癌治疗中的疗效对比[J]. 中华结直肠疾病电子杂志, 2022, 11(01): 36-43.
[12] 许航, 崔宇韬, 任广凯, 刘贺, 王雁冰, 彭传刚, 吴丹凯. 骨质疏松症关键基因的筛选及生物信息学分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 18-22.
[13] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[14] 华杨, 孙劲禹, 程晨, 邢子琳, 盛燕辉, 孔祥清, 孙伟. 肥厚型心肌病的关键基因:一项基于加权基因共表达网络的分析[J]. 中华心脏与心律电子杂志, 2023, 11(01): 32-38.
[15] 刘仕锦, 张怡然, 丁晖, 赵晓旭, 潘运龙. 代谢综合征与端粒状态对结直肠癌患者预后的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 231-235.
阅读次数
全文


摘要