1 |
Lu JJ, Zhou ZB, Ma J, et al. Tumour necrosis factor-α promotes BMHSC differentiation by increasing P2X7 receptor in oestrogen-deficient osteoporosis [J]. Cell Mol Med, 2020, 24(24): 14316-14324.
|
2 |
Hutchings G, Moncrieff L, Dompe C,et al. Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to Clinical trials [J]. Clin Med, 2020, 9(1): 139.
|
3 |
Ponzetti M, Rucci N. Updates on osteoimmunology: what's new on the cross-talk between bone and immune system [J]. Front Endocrinol (Lausanne), 2019, 10: 236.
|
4 |
Damerau A, Gaber T, Ohrndorf S, et al. JAK/STAT activation: a general mechanism for bone development, homeostasis, and regeneration [J]. Int J Mol Sci, 2020, 21(23): 9004.
|
5 |
Zelová H, Hosek J. TNF-α signalling and inflammation: interactions between old acquaintances [J]. Inflamm Res, 2013, 62(7): 641-651.
|
6 |
Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives [J]. Trends Cell Biol, 2001, 11(9): 372-377.
|
7 |
Carswell EA, Old LJ, Kassel RL, et al. An endotoxin-induced serum factor that causes necrosis of tumors [J]. Proc Natl Acad Sci U S A, 1975, 72(9): 3666-3670.
|
8 |
Tracey D, Klareskog L, Sasso EH, et al. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review [J]. Pharmacol Ther, 2008, 117(2): 244-279.
|
9 |
Zhao B. TNF and bone remodeling [J]. Curr Osteoporos Rep, 2017, 15(3): 126-134.
|
10 |
Murad R, Shezad Z, Ahmed S, et al. Serum tumour necrosis factor alpha in osteopenic and osteoporotic postmenopausal females: a cross-sectional study in Pakistan [J]. J Pak Med Assoc, 2018, 68(3): 428-431.
|
11 |
Soysa NS, Alles N. Osteoclast function and bone-resorbing activity: an overview [J]. Biochem Biophys Res Commun, 2016, 476(3): 115-120.
|
12 |
Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-α on bone homeostasis [J]. Front Immunol, 2014, 5: 48.
|
13 |
Kim HJ, Kang WY, Seong SJ, et al. Follistatin-like 1 promotes osteoclast formation via RANKL-mediated NF-κB activation and M-CSF-induced precursor proliferation [J]. Cell Signal, 2016, 28(9): 1137-1144.
|
14 |
Amarasekara DS, Yun H, Kim S,et al. Regulation of osteoclast differentiation by cytokine networks [J]. Immune Netw, 2018, 18(1): 8.
|
15 |
García-López S, Villanueva R, Meikle MC. Alterations in the Synthesis of IL-1β, TNF-α, IL-6, and their downstream targets RANKL and OPG by mouse calvarial osteoblasts in vitro: inhibition of bone resorption by cyclic mechanical strain [J]. Front Endocrinol (Lausanne), 2013, 4: 160.
|
16 |
Liu H, Luo T, Tan J, et al. 'Osteoimmunology' offers new perspectives for the treatment of pathological bone loss [J]. Curr Pharm Des, 2017, 23(41): 6272-6278.
|
17 |
Kanazawa K, Azuma Y, Nakano H, et al. TRAF5 functions in both RANKL- and TNFalpha-induced osteoclastogenesis [J]. J Bone Miner Res, 2003, 18(3): 443-450.
|
18 |
Kanazawa K, Kudo A. TRAF2 is essential for TNF-alpha-induced osteoclastogenesis [J]. J Bone Miner Res, 2005, 20(5): 840-847.
|
19 |
Park E, Choi S, Shin B, et al. Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction [J]. J Bio Chem, 2015, 290(15): 9660-9673.
|
20 |
Zhang YH, Heulsmann A, Tondravi MM, et al. Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways [J]. J Biol Chem, 2001, 276(1): 563-568.
|
21 |
Zha L, He L, Liang Y, et al. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation [J]. Biomed Pharmacother, 2018, 102: 369-374.
|
22 |
Sang C, Zhang J, Zhang Y, et al. TNF-α promotes osteoclastogenesis through JNK signaling-dependent induction of Semaphorin3D expression in estrogen-deficiency induced osteoporosis [J]. J Cell Physiol, 2017, 232(12): 3396-3408.
|
23 |
Marahleh A, Kitaura H, Ohori F, et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation [J]. Front Immunol, 2019, 10: 2925.
|
24 |
Kitaura H, Kimura K, Ishida M, et al. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo [J]. Clin Dev Immunol, 2013, 2013: 181849.
|
25 |
Weitzmann MN. Bone and the immune system [J]. Toxicol Pathol, 2017, 45(7): 911-924.
|
26 |
Wang Y, Galli M, Shade Silver A, et al. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis [J]. J Cell Sci, 2018, 131(11): 213967.
|
27 |
Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks [J]. Int J Mol Sci, 2021, 22(6): 2851.
|
28 |
Sang C, Zhang Y, Chen F, et al. Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis [J]. Bone, 2016, 84: 78-87.
|
29 |
Du D, Zhou Z, Zhu L, et al. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced osteoporosis [J]. Bone, 2018, 117: 161-170.
|
30 |
Xu L, Zheng L, Wang Z, et al. TNF-α-induced SOX5 upregulation is involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells through KLF4 signal pathway [J]. Mol Cells, 2018, 41(6): 575-581.
|
31 |
Zuo C, Zhao X, Shi Y, et al. TNF-α inhibits SATB2 expression and osteoblast differentiation through NF-κB and MAPK pathways [J]. Oncotarget, 2017, 9(4): 4833-4850.
|
32 |
Ye X, Huang H, Zhao N, et al. Inhibition of Runx2 signaling by TNF-α in ST2 murine bone marrow stromal cells undergoing osteogenic differentiation [J]. In Vitro Cell Dev Biol Anim, 2016, 52(10): 1026-1033.
|
33 |
Wang LM, Zhao N, Zhang J, et al. Tumor necrosis factor-alpha inhibits osteogenic differentiation of pre-osteoblasts by downregulation of EphB4 signaling via activated nuclear factor-kappaB signaling pathway [J]. J Periodontal Res, 2018, 53(1): 66-72.
|
34 |
Li K, Qiu H, Yan J, et al. The involvement of TNF-α and TNF-β as proinflammatory cytokines in lymphocyte-mediated adaptive immunity of Nile tilapia by initiating apoptosis [J]. Dev Comp Immunol, 2021, 115: 103884.
|
35 |
DAmelio P, Sassi F, Buondonno I, et al. Treatment with intermittent PTH increases Wnt10b production by T cells in osteoporotic patients [J]. Osteoporos Int, 2015, 26(12): 2785-2791.
|
36 |
Li JY, DAmelio P, Robinson J, et al. IL-17A is increased in humans with primary hyperparathyroidism and mediates PTH-induced bone loss in mice [J]. Cell Metab, 2015, 22(5): 799-810.
|
37 |
Murray PJ. Macrophage polarization [J]. Annu Rev Physiol, 2017, 79: 541-566.
|
38 |
Lassus J, Salo J, Jiranek WA, et al. Macrophage activation results in bone resorption [J]. Clin Orthop Relat Res, 1998(352): 7-15.
|
39 |
Clausell N, Kalil P, Biolo A, et al. Increased expression of tumor necrosis factor-alpha in diabetic macrovasculopathy [J]. Cardiovasc Pathol, 1999, 8(3): 145-151.
|
40 |
Hsu E, Pacifici R. From osteoimmunology to osteomicrobiology: how the microbiota and the immune system regulate bone [J]. Calcif Tissue Int, 2018, 102(5): 512-521.
|
41 |
Faienza MF, Ventura A, Marzano F, et al. Postmenopausal osteoporosis: the role of immune system cells [J]. Clin Dev Immunol, 2013, 2013: 575936.
|
42 |
Kawai VK, Stein CM, Perrien DS, et al. Effects of anti-tumor necrosis factor α agents on bone [J]. Curr Opin Rheumatol, 2012 , 24(5): 576-585.
|
43 |
Charatcharoenwitthaya N, Khosla S, Atkinson EJ, et al. Effect of blockade of TNF-alpha and interleukin-1 action on bone resorption in early postmenopausal women [J]. J Bone Miner Res, 2007, 22(5): 724-729.
|
44 |
Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin [J]. Science, 1985, 229(4716): 869-871.
|
45 |
Pietschmann P, Mechtcheriakova D, Meshcheryakova A, et al. Immunology of osteoporosis: a mini-review [J]. Gerontology, 2016, 62(2): 128-137.
|
46 |
Beek KJ, Rusman T, van der Weijden MAC, et al. Long-term treatment with TNF-alpha inhibitors improves bone mineral density but not vertebral fracture progression in ankylosing spondylitis [J]. J Bone Miner Res, 2019, 34(6): 1041-1048.
|
47 |
Gulyás K, Horváth Á, Végh E, et al. Effects of 1-year anti-TNF-α therapies on bone mineral density and bone biomarkers in rheumatoid arthritis and ankylosing spondylitis [J]. Clin Rheumatol, 2020, 39(1): 167-175.
|