切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 597 -600. doi: 10.3877/cma.j.issn.1674-0785.2022.06.023

综述

高氧血症与机械通气治疗导致呼吸机相关性肺炎的相关性研究进展
杨怡1, 胡馗2, 胡汝均3, 江智霞4,()   
  1. 1. 550000 贵州贵阳,贵州省人民医院重症医学科
    2. 550000 贵州贵阳,贵州省人民医院心血管外科
    3. 563000 贵州遵义,遵义医科大学附属医院急诊科
    4. 550000 贵州贵阳,贵州护理职业技术学院办公室
  • 收稿日期:2021-09-06 出版日期:2022-06-15
  • 通信作者: 江智霞
  • 基金资助:
    国家自然科学基金(82060094); 贵州省遵义市科技计划项目(2020-256)

Research progress on the correlation between hyperoxemia and ventilator-associated pneumonia caused by mechanical ventilation treatment

Yi Yang1, Kui Hu2, Rujun Hu3, Zhixia Jiang4,()   

  1. 1. Department of Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang 550000, China
    2. Department of Cardiovascular Medicine, Guizhou Provincial People's Hospital, Guiyang 550000, China
    3. Department of Intensive Care Unit, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
    4. Guizhou Nursing Vocational and Technical College Office, Guiyang 550000, China
  • Received:2021-09-06 Published:2022-06-15
  • Corresponding author: Zhixia Jiang
引用本文:

杨怡, 胡馗, 胡汝均, 江智霞. 高氧血症与机械通气治疗导致呼吸机相关性肺炎的相关性研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 597-600.

Yi Yang, Kui Hu, Rujun Hu, Zhixia Jiang. Research progress on the correlation between hyperoxemia and ventilator-associated pneumonia caused by mechanical ventilation treatment[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(06): 597-600.

氧疗成为接受机械通气的危重病人支持护理的关键,充足的氧气治疗既可以预防缺氧,改善主要器官因缺氧引起的相关症状,又可造成呼吸机相关性肺炎(VAP),可见高氧血症与机械通气治疗导致VAP之间存在一定的相关性。在这篇综述中,通过分析高氧血症的定义、高氧血症与VAP的关系、高氧血症引发VAP的可能机制及潜在的干预措施,为改善接受氧疗的危重患者的预后,降低VAP发生提供参考。

Adequate oxygen therapy has become a key to support and care for critically ill patients receiving mechanical ventilation. Adequate oxygen therapy can not only prevent hypoxia and improve the related symptoms caused by hypoxia in major organs, but it may also cause ventilator-associated pneumonia (VAP). There is a certain correlation between hyperoxemia and VAP caused by mechanical ventilation. In this review, we discuss the definition of hyperoxaemia, the relationship between hyperoxaemia and VAP, the possible mechanism for hyperoxemia to trigger VAP, and potential interventions, with an aim to provide reference for improving the prognosis of critically ill patients receiving oxygen therapy and reducing the occurrence of VAP .

图1 高氧血症与VAP之间的关系注:VAP为呼吸机相关性肺炎
1
Suzuki S, Eastwood GM, Peck L, et al. Current oxygen management in mechanically ventilated patients: a prospective observational cohort study [J]. J Crit Care, 2013, 28(5): 647-654.
2
Vincent JL, Taccone FS, He X. Harmful effects of hyperoxia in postcardiac arrest, sepsis, traumatic brain injury, or stroke: The importance of individualized oxygen therapy in critically ill patients [J]. Can Respir J, 2017, 2017: 2834956.
3
Helmerhorst HJ, Arts DL, Schultz MJ, et al. Metrics of arterial hyperoxia and associated outcomes in critical care [J]. Crit Care Med, 2017, 45(2): 187-195.
4
Hafner S, Beloncle F, Koch A, et al. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update [J]. Ann Intensive Care, 2015, 5(1): 42.
5
Kaydu A, Orhun G, Çakar N. Relationship between arterial oxygen tension and mortality of patients in intensive care unit on mechanical ventilation support [J]. Ulus Travma Acil Cerrahi Derg, 2019, 25(4): 331-337.
6
Bellomo R, Bailey M, Eastwood GM, et al. Study of oxygen in critical care (SOCC) group. arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest [J]. Crit Care, 2011, 15(2): R90.
7
Asher SR, Curry P, Sharma D, et al. Survival advantage and PaO2 threshold in severe traumatic brain injury [J]. J Neurosurg Anesthesiol, 2013, 25(2): 168-173.
8
Eastwood G, Bellomo R, Bailey M, et al. Arterial oxygen tension and mortality in mechanically ventilated patients [J]. Intensive Care Med, 2012, 38(1): 91-98.
9
Helmerhorst HJF, Schouten LRA, Wagenaar GTM, et al. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes [J]. Intensive Care Med Exp, 2017, 5(1): 27.
10
Kallet RH. Adjunct therapies during mechanical ventilation: airway clearance techniques, therapeutic aerosols, and gases [J]. Respir Care, 2013, 58(6): 1053-1073.
11
Eastwood G, Bellomo R, Bailey M, et al. Arterial oxygen tension and mortality in mechanically ventilated patients [J]. Intensive Care Med, 2012, 38(1): 91-98.
12
Huang YC, Caminiti SP, Fawcett TA, et al. Natural surfactant and hyperoxic lung injury in primates. I. Physiology and biochemistry [J]. J Appl Physiol (1985), 1994, 76(3): 991-1001.
13
Whiting J, Edriss H, Nugent K. Frequency and etiology of ventilator-associated events in the medical intensive care unit [J]. Am J Med Sci, 2015, 350(6): 453-457.
14
Wang M, Gorasiya S, Antoine DJ, et al. The compromise of macrophage functions by hyperoxia is attenuated by ethacrynic acid via inhibition of NF-κB-mediated release of high-mobility group box-1 [J]. Am J Respir Cell Mol Biol, 2015, 52(2): 171-182.
15
Kikuchi Y, Tateda K, Fuse ET, et al. Hyperoxia exaggerates bacterial dissemination and lethality in Pseudomonas aeruginosa pneumonia [J]. Pulm Pharmacol Ther, 2009, 22(4): 333-339.
16
Tateda K, Deng JC, Moore TA, et al. Hyperoxia mediates acute lung injury and increased lethality in murine Legionella pneumonia: the role of apoptosis [J]. J Immunol, 2003, 170(8): 4209-4216.
17
Entezari M, Weiss DJ, Sitapara R, et al. Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against pseudomonas aeruginosa pneumonia in cystic fibrosis [J]. Mol Med, 2012, 18(1): 477-485.
18
Patel VS, Sitapara RA, Gore A, et al. High mobility group Box-1 mediates hyperoxia-induced impairment of pseudomonas aeruginosa clearance and inflammatory lung injury in mice [J]. Am J Respir Cell Mol Biol, 2013, 48(3): 280-287.
19
Helmerhorst HJF, Arts DL, Schultz MJ, et al. Metrics of arterial hyperoxia and associated outcomes in critical care [J]. Crit Care Med, 2017, 45(2): 187-195.
20
Ludke A, Akolkar G, Ayyappan P, et al. Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C [J]. PLoS One, 2017, 12(7): e0179452.
21
Arita Y, Kazzaz JA, Joseph A, et al. Antioxidants improve antibacterial function in hyperoxia-exposed macrophages [J]. Free Radic Biol Med, 2007, 42(10): 1517-1523.
22
Patel VS, Sampat V, Espey MG, et al. Ascorbic acid attenuates hyperoxia-compromised host defense against pulmonary bacterial infection [J]. Am J Respir Cell Mol Biol, 2016, 55(4): 511-520.
23
Liu D, Wang Y, Li L, et al. Celecoxib protects hyperoxia-induced lung injury via NF-κB and AQP1 [J]. Front Pediatr, 2019, 7(7): 228.
24
Jin C, Jin Z, Zhang Y. Glutamine inhibits the inflammation in preterm rats with lung injury induced by hyperoxia and its mechanism [J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2018, 34(12): 1086-1090.
25
Wang Y, Zhu Y, Zhu Y, et al. Regulation of the angiotensin Ⅱ-p22phox-reactive oxygen species signaling pathway, apoptosis and 8-oxoguanine-DNA glycosylase 1 retrieval in hyperoxia-induced lung injury and fibrosis in rats [J]. Exp Ther Med, 2017, 13(6): 3397-3407.
26
Dombrowsky H, Tschernig T, Vieten G, et al. Molecular and functional changes of pulmonary surfactant in response to hyperoxia [J]. Pediatr Pulmonol, 2006, 41(11): 1025-1039.
27
Helmerhorst HJ, Roos-Blom MJ, van Westerloo DJ, et al. Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital mortality after resuscitation from cardiac arrest [J]. Crit Care, 2015, 19(9): 348.
28
Suzuki S, Eastwood GM, Goodwin MD, et al. Atelectasis and mechanical ventilation mode during conservative oxygen therapy: a before-and-after study [J]. J Crit Care, 2015, 30(6): 1232-1237.
29
Helmerhorst HJ, Schultz MJ, van der Voort PH, et al. Effectiveness and clinical outcomes of a two-step implementation of conservative oxygenation targets in critically ill patients: a before and after trial [J]. Crit Care Med, 2016, 44(3): 554-563.
[1] 豆艺璇, 黄怀, 钱绮雯, 邢然然, 林丽, 白建芳. 低强度吸气肌训练对机械通气患者肺康复的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 370-375.
[2] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[5] 佳麒, 罗楷, 杨磊, 李羽. 气管插管患儿围术期套囊压力管理研究现状杨[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 132-138.
[6] 程传丽, 曾慧, 周静, 孙凌霞, 吴敏, 钱明江, 陈武, 万洁, 周仁佳. 超声引导下胸肺物理治疗对机械通气患者膈肌功能的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 563-565.
[7] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[8] 安钱, 徐彬, 陈志祥, 徐晶晶, 黄丹丹. PCT、CRP及SAA对呼吸机相关性肺炎病情严重程度和预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 544-546.
[9] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[10] 徐欣轶, 薛蓓, 蒋莉, 陈慧. NRI联合CFS评分对肺癌术后机械通气的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 358-360.
[11] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[12] 周旻忞, 张恒喜, 冯华, 施林燕. 超声膈肌功能评估对重症肺炎伴呼吸衰竭患者机械通气撤机的指导意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 98-100.
[13] 张俊谊, 徐晓婷, 刘玲. 肌肉组织特异性miRNA与机械通气患者膈肌功能及撤机结局的关系[J]. 中华重症医学电子杂志, 2023, 09(01): 46-53.
[14] 朱秀芬, 韦碧琳, 郑慧芳, 丁林芳, 徐子萌, 余文轩, 原皓, 常泽楠, 黄志坤, 刘紫锰. T管与PSV自主呼吸试验对重症患者成功撤机后临床转归的影响——一项回顾性队列研究[J]. 中华重症医学电子杂志, 2023, 09(01): 54-61.
[15] 李宏亮, 周建新. 反转触发:易被忽视的人机不同步[J]. 中华重症医学电子杂志, 2023, 09(01): 19-24.
阅读次数
全文


摘要