切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 597 -600. doi: 10.3877/cma.j.issn.1674-0785.2022.06.023

综述

高氧血症与机械通气治疗导致呼吸机相关性肺炎的相关性研究进展
杨怡1, 胡馗2, 胡汝均3, 江智霞4,()   
  1. 1. 550000 贵州贵阳,贵州省人民医院重症医学科
    2. 550000 贵州贵阳,贵州省人民医院心血管外科
    3. 563000 贵州遵义,遵义医科大学附属医院急诊科
    4. 550000 贵州贵阳,贵州护理职业技术学院办公室
  • 收稿日期:2021-09-06 出版日期:2022-06-15
  • 通信作者: 江智霞
  • 基金资助:
    国家自然科学基金(82060094); 贵州省遵义市科技计划项目(2020-256)

Research progress on the correlation between hyperoxemia and ventilator-associated pneumonia caused by mechanical ventilation treatment

Yi Yang1, Kui Hu2, Rujun Hu3, Zhixia Jiang4,()   

  1. 1. Department of Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang 550000, China
    2. Department of Cardiovascular Medicine, Guizhou Provincial People's Hospital, Guiyang 550000, China
    3. Department of Intensive Care Unit, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
    4. Guizhou Nursing Vocational and Technical College Office, Guiyang 550000, China
  • Received:2021-09-06 Published:2022-06-15
  • Corresponding author: Zhixia Jiang
引用本文:

杨怡, 胡馗, 胡汝均, 江智霞. 高氧血症与机械通气治疗导致呼吸机相关性肺炎的相关性研究进展[J/OL]. 中华临床医师杂志(电子版), 2022, 16(06): 597-600.

Yi Yang, Kui Hu, Rujun Hu, Zhixia Jiang. Research progress on the correlation between hyperoxemia and ventilator-associated pneumonia caused by mechanical ventilation treatment[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(06): 597-600.

氧疗成为接受机械通气的危重病人支持护理的关键,充足的氧气治疗既可以预防缺氧,改善主要器官因缺氧引起的相关症状,又可造成呼吸机相关性肺炎(VAP),可见高氧血症与机械通气治疗导致VAP之间存在一定的相关性。在这篇综述中,通过分析高氧血症的定义、高氧血症与VAP的关系、高氧血症引发VAP的可能机制及潜在的干预措施,为改善接受氧疗的危重患者的预后,降低VAP发生提供参考。

Adequate oxygen therapy has become a key to support and care for critically ill patients receiving mechanical ventilation. Adequate oxygen therapy can not only prevent hypoxia and improve the related symptoms caused by hypoxia in major organs, but it may also cause ventilator-associated pneumonia (VAP). There is a certain correlation between hyperoxemia and VAP caused by mechanical ventilation. In this review, we discuss the definition of hyperoxaemia, the relationship between hyperoxaemia and VAP, the possible mechanism for hyperoxemia to trigger VAP, and potential interventions, with an aim to provide reference for improving the prognosis of critically ill patients receiving oxygen therapy and reducing the occurrence of VAP .

图1 高氧血症与VAP之间的关系注:VAP为呼吸机相关性肺炎
1
Suzuki S, Eastwood GM, Peck L, et al. Current oxygen management in mechanically ventilated patients: a prospective observational cohort study [J]. J Crit Care, 2013, 28(5): 647-654.
2
Vincent JL, Taccone FS, He X. Harmful effects of hyperoxia in postcardiac arrest, sepsis, traumatic brain injury, or stroke: The importance of individualized oxygen therapy in critically ill patients [J]. Can Respir J, 2017, 2017: 2834956.
3
Helmerhorst HJ, Arts DL, Schultz MJ, et al. Metrics of arterial hyperoxia and associated outcomes in critical care [J]. Crit Care Med, 2017, 45(2): 187-195.
4
Hafner S, Beloncle F, Koch A, et al. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update [J]. Ann Intensive Care, 2015, 5(1): 42.
5
Kaydu A, Orhun G, Çakar N. Relationship between arterial oxygen tension and mortality of patients in intensive care unit on mechanical ventilation support [J]. Ulus Travma Acil Cerrahi Derg, 2019, 25(4): 331-337.
6
Bellomo R, Bailey M, Eastwood GM, et al. Study of oxygen in critical care (SOCC) group. arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest [J]. Crit Care, 2011, 15(2): R90.
7
Asher SR, Curry P, Sharma D, et al. Survival advantage and PaO2 threshold in severe traumatic brain injury [J]. J Neurosurg Anesthesiol, 2013, 25(2): 168-173.
8
Eastwood G, Bellomo R, Bailey M, et al. Arterial oxygen tension and mortality in mechanically ventilated patients [J]. Intensive Care Med, 2012, 38(1): 91-98.
9
Helmerhorst HJF, Schouten LRA, Wagenaar GTM, et al. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes [J]. Intensive Care Med Exp, 2017, 5(1): 27.
10
Kallet RH. Adjunct therapies during mechanical ventilation: airway clearance techniques, therapeutic aerosols, and gases [J]. Respir Care, 2013, 58(6): 1053-1073.
11
Eastwood G, Bellomo R, Bailey M, et al. Arterial oxygen tension and mortality in mechanically ventilated patients [J]. Intensive Care Med, 2012, 38(1): 91-98.
12
Huang YC, Caminiti SP, Fawcett TA, et al. Natural surfactant and hyperoxic lung injury in primates. I. Physiology and biochemistry [J]. J Appl Physiol (1985), 1994, 76(3): 991-1001.
13
Whiting J, Edriss H, Nugent K. Frequency and etiology of ventilator-associated events in the medical intensive care unit [J]. Am J Med Sci, 2015, 350(6): 453-457.
14
Wang M, Gorasiya S, Antoine DJ, et al. The compromise of macrophage functions by hyperoxia is attenuated by ethacrynic acid via inhibition of NF-κB-mediated release of high-mobility group box-1 [J]. Am J Respir Cell Mol Biol, 2015, 52(2): 171-182.
15
Kikuchi Y, Tateda K, Fuse ET, et al. Hyperoxia exaggerates bacterial dissemination and lethality in Pseudomonas aeruginosa pneumonia [J]. Pulm Pharmacol Ther, 2009, 22(4): 333-339.
16
Tateda K, Deng JC, Moore TA, et al. Hyperoxia mediates acute lung injury and increased lethality in murine Legionella pneumonia: the role of apoptosis [J]. J Immunol, 2003, 170(8): 4209-4216.
17
Entezari M, Weiss DJ, Sitapara R, et al. Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against pseudomonas aeruginosa pneumonia in cystic fibrosis [J]. Mol Med, 2012, 18(1): 477-485.
18
Patel VS, Sitapara RA, Gore A, et al. High mobility group Box-1 mediates hyperoxia-induced impairment of pseudomonas aeruginosa clearance and inflammatory lung injury in mice [J]. Am J Respir Cell Mol Biol, 2013, 48(3): 280-287.
19
Helmerhorst HJF, Arts DL, Schultz MJ, et al. Metrics of arterial hyperoxia and associated outcomes in critical care [J]. Crit Care Med, 2017, 45(2): 187-195.
20
Ludke A, Akolkar G, Ayyappan P, et al. Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C [J]. PLoS One, 2017, 12(7): e0179452.
21
Arita Y, Kazzaz JA, Joseph A, et al. Antioxidants improve antibacterial function in hyperoxia-exposed macrophages [J]. Free Radic Biol Med, 2007, 42(10): 1517-1523.
22
Patel VS, Sampat V, Espey MG, et al. Ascorbic acid attenuates hyperoxia-compromised host defense against pulmonary bacterial infection [J]. Am J Respir Cell Mol Biol, 2016, 55(4): 511-520.
23
Liu D, Wang Y, Li L, et al. Celecoxib protects hyperoxia-induced lung injury via NF-κB and AQP1 [J]. Front Pediatr, 2019, 7(7): 228.
24
Jin C, Jin Z, Zhang Y. Glutamine inhibits the inflammation in preterm rats with lung injury induced by hyperoxia and its mechanism [J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2018, 34(12): 1086-1090.
25
Wang Y, Zhu Y, Zhu Y, et al. Regulation of the angiotensin Ⅱ-p22phox-reactive oxygen species signaling pathway, apoptosis and 8-oxoguanine-DNA glycosylase 1 retrieval in hyperoxia-induced lung injury and fibrosis in rats [J]. Exp Ther Med, 2017, 13(6): 3397-3407.
26
Dombrowsky H, Tschernig T, Vieten G, et al. Molecular and functional changes of pulmonary surfactant in response to hyperoxia [J]. Pediatr Pulmonol, 2006, 41(11): 1025-1039.
27
Helmerhorst HJ, Roos-Blom MJ, van Westerloo DJ, et al. Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital mortality after resuscitation from cardiac arrest [J]. Crit Care, 2015, 19(9): 348.
28
Suzuki S, Eastwood GM, Goodwin MD, et al. Atelectasis and mechanical ventilation mode during conservative oxygen therapy: a before-and-after study [J]. J Crit Care, 2015, 30(6): 1232-1237.
29
Helmerhorst HJ, Schultz MJ, van der Voort PH, et al. Effectiveness and clinical outcomes of a two-step implementation of conservative oxygenation targets in critically ill patients: a before and after trial [J]. Crit Care Med, 2016, 44(3): 554-563.
[1] 尹燕燕, 刘爱贤. 多重耐药菌感染呼吸机相关性肺炎的危险因素及预后分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 83-90.
[2] 刘春军, 严方方, 王宝锋, 常婷婷, 郭红红, 李志强. 替加环素联合人免疫球蛋白治疗XDRAB致VAP 的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 797-800.
[3] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[4] 燕红玲, 王岩岩, 陈树斌. PCT、NLR联合LUBS预测ICU CRKP致呼吸机相关肺炎撤机及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 617-620.
[5] 彭祺, 马丽娜, 李倩倩, 陈旭. 重症病毒性肺炎机械通气脱机的影响因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 260-263.
[6] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[7] 韦小霞, 陈管洁, 李雪珠, 李晓青, 钱淑媛. 机械通气患者抗菌药物雾化吸入的临床实施[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 334-337.
[8] 苗明月, 周建新. 肺保护性镇静:应重视呼吸驱动和吸气努力的床旁评估[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 325-328.
[9] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[10] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[11] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[12] 王文珠, 刘建, 袁常秀, 石亚飞, 尤培军. 竖脊肌平面阻滞对非体外循环冠状动脉旁路移植术中阿片类药物用量的影响[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 155-159.
[13] 李春光, 杨洋, 李斌, 华荣, 孙益峰, 李志刚. 不同外科修复模式治疗机械通气相关气管食管瘘的短期疗效评价[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 151-157.
[14] 刘晓鹏, 柳聪艳, 杨宁, 蔡琛, 李晓兵, 王红宇, 张思森. 三穴五针联合腹部提压法在机械通气患者肺康复中的疗效[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 193-198.
[15] 刘晴雯, 韩勇, 陈丽丹, 邓哲. 早期机械通气对成人院内心脏骤停病死率的影响:一项回顾性队列研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 203-206.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?