切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 601 -604. doi: 10.3877/cma.j.issn.1674-0785.2022.06.024

综述

microRNA与脑动脉粥样硬化斑块破裂的研究新进展
冯佳佳1, 刘丹1,(), 张广炜1,(), 金丽霞1   
  1. 1. 014010 内蒙古包头,内蒙古科技大学包头医学院第一附属医院神经内三科
  • 收稿日期:2021-07-28 出版日期:2022-06-15
  • 通信作者: 刘丹, 张广炜
  • 基金资助:
    内蒙古自治区科技计划资助项目(201802129)

New research progress of microRNAs and cerebral atherosclerotic plaque rupture

Jiajia Feng1, Dan Liu1,(), Guangwei Zhang1,(), Lixia Jin1   

  1. 1. Department of Neurology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
  • Received:2021-07-28 Published:2022-06-15
  • Corresponding author: Dan Liu, Guangwei Zhang
引用本文:

冯佳佳, 刘丹, 张广炜, 金丽霞. microRNA与脑动脉粥样硬化斑块破裂的研究新进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 601-604.

Jiajia Feng, Dan Liu, Guangwei Zhang, Lixia Jin. New research progress of microRNAs and cerebral atherosclerotic plaque rupture[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(06): 601-604.

动脉粥样硬化斑块破裂是导致缺血性脑卒中急性发作的重要原因。微小核糖核酸(miRNA)是高度保守的、短的、单链的非编码RNA,因其在调控转录后基因表达方面起关键作用而被广泛关注。且诸多研究表明miRNA参与了动脉粥样硬化斑块破裂的各个环节,现就miRNA与动脉粥样硬化斑块破裂相关的纤维帽、坏死核心、巨噬细胞、新生血管等方面进行综述。

Rupture of atherosclerotic plaque is an important cause of acute ischemic stroke. MicroRNAs (miRNAs) are a class of highly conserved, short, single-stranded non-coding RNAs, which have attracted wide attention because of their key role in regulating post-transcriptional gene expression. Many studies have shown that miRNAs are involved in all aspects of atherosclerotic plaque rupture. This paper reviews the relationship of miRNAs with the fibrous cap, necrotic core, macrophages, and neovascularization related to atherosclerotic plaque rupture.

1
Wu MY, Li CJ, Hou MF, et al. New insights into the role of inflammation in the pathogenesis of atherosclerosis [J]. Int J Mol Sci, 2017, 18(10): 2034.
2
Khosravi M, Poursaleh A, Ghasempour G, et al. The effects of oxidative stress on the development of atherosclerosis [J]. Biol Chem, 2019, 400(6): 711-732.
3
Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis [J]. Nature, 2011, 473(7347): 317-325.
4
Watanabe Y, Nagayama M, Sakata A, et al. Evaluation of fibrous cap rupture of atherosclerotic carotid plaque with thin-slice source images of time-of-flight MR angiography [J]. Ann Vasc Dis, 2014, 7(2): 127-133.
5
Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis [J]. Circ Res, 2016, 118(4): 703-720.
6
Huang Y, Shen X, Zou Q, et al. Biological functions of microRNAs [J]. Bioorg Khim, 2010, 36: 747-752.
7
Hajibabaie F, Kouhpayeh S, Mirian M, et al. MicroRNAs as the actors in the atherosclerosis scenario [J]. J Physiol Biochem, 2020, 76(1): 1-12.
8
Andreou I, Sun X, Stone PH, et al. miRNAs in atherosclerotic plaque initiation, progression, and rupture [J]. Trends Mol Med, 2015, 21(5): 307-318.
9
柴捷, 龙熙, 陈磊, 等. MiRNA突变改变其功能 [J]. 生命的化学, 2020, 40(10): 1722-1729.
10
Correia de Sousa M, Gjorgjieva M, Dolicka D, et al. Deciphering miRNAs' action through miRNA editing [J]. Int J Mol Sci, 2019, 20(24): 6249.
11
Wang H, Liu D, Zhang H. Investigation of the underlying genes and mechanism of macrophage-enriched ruptured atherosclerotic plaques using bioinformatics method [J]. J Atheroscler Thromb, 2019, 26(7): 636-658.
12
Laffont B, Rayner KJ. MicroRNAs in the pathobiology and therapy of atherosclerosis [J]. Can J Cardiol, 2017, 33(3): 313-324.
13
赵晨, 贾海波, 李丽丽. 炎症反应对于冠状动脉斑块易损性的影响 [J]. 中国介入心脏病学杂志, 2020, 28(3): 163-166.
14
Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture [J]. Circ Res, 2014, 114(12): 1852-1866.
15
Solly EL, Dimasi CG, Bursill CA, et al. MicroRNAs as therapeutic targets and clinical biomarkers in atherosclerosis [J]. J Clin Med, 2019, 8(12): 2199.
16
尹婕, 李琦, 赵正, 等. 纤维化对动脉粥样硬化斑块稳定性的基础研究及相关药物应用 [J]. 中国中药杂志, 2019, 44(2): 235-241.
17
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis [J]. Circ Res, 2016, 118(4): 692-702.
18
Bazan HA, Hatfield SA, O'Malley CB, et al. Acute loss of miR-221 and miR-222 in the atherosclerotic plaque shoulder accompanies plaque rupture [J]. Stroke, 2015, 46(11): 3285-3287.
19
Lovren F, Pan Y, Quan A, et al. MicroRNA-145 targeted therapy reduces atherosclerosis [J]. Circulation, 2012, 126(11 Suppl 1): S81-S90.
20
Castoldi G, Di Gioia CR, Bombardi C, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension [J]. J Cell Physiol, 2012, 227(2): 850-856.
21
Leistner DM, Boeckel JN, Reis SM, et al. Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristicsv [J]. Eur Heart J, 2016, 37(22): 1738-1749.
22
Lu Y, Thavarajah T, Gu W, et al. Impact of miRNA in atherosclerosis [J]. Arterioscler Thromb Vasc Biol, 2018, 38(9): e159-e170.
23
Santovito D, Egea V, Weber C. Small but smart: microRNAs orchestrate atherosclerosis development and progression [J]. Biochim Biophys Acta, 2016, 1861(12 Pt B): 2075-2086.
24
张智鑫, 王博. 影响颈动脉斑块稳定性的机制研究进 [J]. 世界最新医学信息文摘, 2019, 19(30): 95-96, 98.
25
Liu H, Xiong W, Liu F, et al. MicroRNA-133b regulates the growth and migration of vascular smooth muscle cells by targeting matrix metallopeptidase 9 [J]. Pathol Res Pract, 2019, 215(5): 1083-1088.
26
Gonzalez L, Trigatti BL. Macrophage apoptosis and necrotic core development in atherosclerosis: a rapidly advancing field with clinical relevance to imaging and therapy [J]. Can J Cardiol, 2017, 33(3): 303-312.
27
Das A, Ganesh K, Khanna S, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation [J]. J Immunol, 2014, 192(3): 1120-1129.
28
Wei Y, Zhu M, Corbalán-Campos J, et al. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis [J]. Arterioscler Thromb Vasc Biol, 2015, 35(4): 796-803.
29
Hoseini Z, Sepahvand F, Rashidi B, et al. NLRP3 inflammasome: its regulation and involvement in atherosclerosis [J]. J Cell Physiol, 2018, 233(3): 2116-2132.
30
Yang S, Ye ZM, Chen S, et al. MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages [J]. J Mol Cell Cardiol, 2018, 123: 139-149.
31
Chipont A, Esposito B, Challier I, et al. MicroRNA-21 deficiency alters the survival of Ly-6Clo monocytes in ApoE-/- mice and reduces early-stage atherosclerosis-brief report [J]. Arterioscler Thromb Vasc Biol, 2019, 39(2): 170-177.
32
Camaré C, Pucelle M, Nègre-Salvayre A, et al. Angiogenesis in the atherosclerotic plaque [J]. Redox Biol, 2017, 12: 18-34.
33
Wei Y, Schober A, Weber C. Pathogenic arterial remodeling: the good and bad of microRNAs [J]. Am J Physiol Heart Circ Physiol, 2013, 4(8): H1050-9.
34
Madrigal-Matute J, Rotllan N, Aranda JF, et al. MicroRNAs and atherosclerosis [J]. Curr Atheroscler Rep, 2013, 15(5): 322.
35
Urbich C, Kaluza D, Frömel T, et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A [J]. Blood, 2012, 119(6): 1607-1616.
36
Chang SH, Hla T. Gene regulation by RNA binding proteins and microRNAs in angiogenesis [J]. Trends Mol Med, 2011, 17(11): 650-658.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[3] 王友芳, 李兴超, 朱晓松, 刘清敏, 张建国, 杨淑红, 相然, 张蒙蒙, 车峰远. 预后营养指数对急性颅内动脉粥样硬化性大血管闭塞患者预后评估价值分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 193-197.
[4] 秦玲玲, 游兆媛, 丁舒, 王晓莉, 朱萌. 基于遗忘曲线规律的随访对冠状动脉粥样硬化性心脏病介入治疗患者自我管理行为的影响[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 481-485.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 谢恩睿, 段一璇, 刘畅, 邓捷. 利用随机森林联合人工神经网络基于外周血细胞易感基因建立冠心病诊断模型[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 19-26.
[7] 刘宏达, 邵祥忠, 李林, 许小伟. 海安地区动脉粥样硬化性脑梗死患者CYP2C19基因多态性及与氯吡格雷抵抗的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 234-240.
[8] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[9] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[10] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[11] 杨占奇, 钟绍婷, 谢焱, 张琼阁, 赵红薇, 张宏林, 王宏宇. 北京市古城社区卫生服务中心慢性病管理现况浅析[J]. 中华临床医师杂志(电子版), 2022, 16(06): 474-480.
[12] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[13] 熊鑫, 邓勇志. 基于血管内超声的机器学习在冠状动脉病变中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(03): 153-157.
[14] 邱令智, 胡萍, 罗婷, 鄢华. 脂蛋白(a)与心房颤动关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 280-284.
[15] 林雨, 王艳玲. 颈动脉斑块易损性的评估与干预的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 66-69.
阅读次数
全文


摘要