切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 601 -604. doi: 10.3877/cma.j.issn.1674-0785.2022.06.024

综述

microRNA与脑动脉粥样硬化斑块破裂的研究新进展
冯佳佳1, 刘丹1,(), 张广炜1,(), 金丽霞1   
  1. 1. 014010 内蒙古包头,内蒙古科技大学包头医学院第一附属医院神经内三科
  • 收稿日期:2021-07-28 出版日期:2022-06-15
  • 通信作者: 刘丹, 张广炜
  • 基金资助:
    内蒙古自治区科技计划资助项目(201802129)

New research progress of microRNAs and cerebral atherosclerotic plaque rupture

Jiajia Feng1, Dan Liu1,(), Guangwei Zhang1,(), Lixia Jin1   

  1. 1. Department of Neurology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
  • Received:2021-07-28 Published:2022-06-15
  • Corresponding author: Dan Liu, Guangwei Zhang
引用本文:

冯佳佳, 刘丹, 张广炜, 金丽霞. microRNA与脑动脉粥样硬化斑块破裂的研究新进展[J/OL]. 中华临床医师杂志(电子版), 2022, 16(06): 601-604.

Jiajia Feng, Dan Liu, Guangwei Zhang, Lixia Jin. New research progress of microRNAs and cerebral atherosclerotic plaque rupture[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(06): 601-604.

动脉粥样硬化斑块破裂是导致缺血性脑卒中急性发作的重要原因。微小核糖核酸(miRNA)是高度保守的、短的、单链的非编码RNA,因其在调控转录后基因表达方面起关键作用而被广泛关注。且诸多研究表明miRNA参与了动脉粥样硬化斑块破裂的各个环节,现就miRNA与动脉粥样硬化斑块破裂相关的纤维帽、坏死核心、巨噬细胞、新生血管等方面进行综述。

Rupture of atherosclerotic plaque is an important cause of acute ischemic stroke. MicroRNAs (miRNAs) are a class of highly conserved, short, single-stranded non-coding RNAs, which have attracted wide attention because of their key role in regulating post-transcriptional gene expression. Many studies have shown that miRNAs are involved in all aspects of atherosclerotic plaque rupture. This paper reviews the relationship of miRNAs with the fibrous cap, necrotic core, macrophages, and neovascularization related to atherosclerotic plaque rupture.

1
Wu MY, Li CJ, Hou MF, et al. New insights into the role of inflammation in the pathogenesis of atherosclerosis [J]. Int J Mol Sci, 2017, 18(10): 2034.
2
Khosravi M, Poursaleh A, Ghasempour G, et al. The effects of oxidative stress on the development of atherosclerosis [J]. Biol Chem, 2019, 400(6): 711-732.
3
Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis [J]. Nature, 2011, 473(7347): 317-325.
4
Watanabe Y, Nagayama M, Sakata A, et al. Evaluation of fibrous cap rupture of atherosclerotic carotid plaque with thin-slice source images of time-of-flight MR angiography [J]. Ann Vasc Dis, 2014, 7(2): 127-133.
5
Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis [J]. Circ Res, 2016, 118(4): 703-720.
6
Huang Y, Shen X, Zou Q, et al. Biological functions of microRNAs [J]. Bioorg Khim, 2010, 36: 747-752.
7
Hajibabaie F, Kouhpayeh S, Mirian M, et al. MicroRNAs as the actors in the atherosclerosis scenario [J]. J Physiol Biochem, 2020, 76(1): 1-12.
8
Andreou I, Sun X, Stone PH, et al. miRNAs in atherosclerotic plaque initiation, progression, and rupture [J]. Trends Mol Med, 2015, 21(5): 307-318.
9
柴捷, 龙熙, 陈磊, 等. MiRNA突变改变其功能 [J]. 生命的化学, 2020, 40(10): 1722-1729.
10
Correia de Sousa M, Gjorgjieva M, Dolicka D, et al. Deciphering miRNAs' action through miRNA editing [J]. Int J Mol Sci, 2019, 20(24): 6249.
11
Wang H, Liu D, Zhang H. Investigation of the underlying genes and mechanism of macrophage-enriched ruptured atherosclerotic plaques using bioinformatics method [J]. J Atheroscler Thromb, 2019, 26(7): 636-658.
12
Laffont B, Rayner KJ. MicroRNAs in the pathobiology and therapy of atherosclerosis [J]. Can J Cardiol, 2017, 33(3): 313-324.
13
赵晨, 贾海波, 李丽丽. 炎症反应对于冠状动脉斑块易损性的影响 [J]. 中国介入心脏病学杂志, 2020, 28(3): 163-166.
14
Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture [J]. Circ Res, 2014, 114(12): 1852-1866.
15
Solly EL, Dimasi CG, Bursill CA, et al. MicroRNAs as therapeutic targets and clinical biomarkers in atherosclerosis [J]. J Clin Med, 2019, 8(12): 2199.
16
尹婕, 李琦, 赵正, 等. 纤维化对动脉粥样硬化斑块稳定性的基础研究及相关药物应用 [J]. 中国中药杂志, 2019, 44(2): 235-241.
17
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis [J]. Circ Res, 2016, 118(4): 692-702.
18
Bazan HA, Hatfield SA, O'Malley CB, et al. Acute loss of miR-221 and miR-222 in the atherosclerotic plaque shoulder accompanies plaque rupture [J]. Stroke, 2015, 46(11): 3285-3287.
19
Lovren F, Pan Y, Quan A, et al. MicroRNA-145 targeted therapy reduces atherosclerosis [J]. Circulation, 2012, 126(11 Suppl 1): S81-S90.
20
Castoldi G, Di Gioia CR, Bombardi C, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension [J]. J Cell Physiol, 2012, 227(2): 850-856.
21
Leistner DM, Boeckel JN, Reis SM, et al. Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristicsv [J]. Eur Heart J, 2016, 37(22): 1738-1749.
22
Lu Y, Thavarajah T, Gu W, et al. Impact of miRNA in atherosclerosis [J]. Arterioscler Thromb Vasc Biol, 2018, 38(9): e159-e170.
23
Santovito D, Egea V, Weber C. Small but smart: microRNAs orchestrate atherosclerosis development and progression [J]. Biochim Biophys Acta, 2016, 1861(12 Pt B): 2075-2086.
24
张智鑫, 王博. 影响颈动脉斑块稳定性的机制研究进 [J]. 世界最新医学信息文摘, 2019, 19(30): 95-96, 98.
25
Liu H, Xiong W, Liu F, et al. MicroRNA-133b regulates the growth and migration of vascular smooth muscle cells by targeting matrix metallopeptidase 9 [J]. Pathol Res Pract, 2019, 215(5): 1083-1088.
26
Gonzalez L, Trigatti BL. Macrophage apoptosis and necrotic core development in atherosclerosis: a rapidly advancing field with clinical relevance to imaging and therapy [J]. Can J Cardiol, 2017, 33(3): 303-312.
27
Das A, Ganesh K, Khanna S, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation [J]. J Immunol, 2014, 192(3): 1120-1129.
28
Wei Y, Zhu M, Corbalán-Campos J, et al. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis [J]. Arterioscler Thromb Vasc Biol, 2015, 35(4): 796-803.
29
Hoseini Z, Sepahvand F, Rashidi B, et al. NLRP3 inflammasome: its regulation and involvement in atherosclerosis [J]. J Cell Physiol, 2018, 233(3): 2116-2132.
30
Yang S, Ye ZM, Chen S, et al. MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages [J]. J Mol Cell Cardiol, 2018, 123: 139-149.
31
Chipont A, Esposito B, Challier I, et al. MicroRNA-21 deficiency alters the survival of Ly-6Clo monocytes in ApoE-/- mice and reduces early-stage atherosclerosis-brief report [J]. Arterioscler Thromb Vasc Biol, 2019, 39(2): 170-177.
32
Camaré C, Pucelle M, Nègre-Salvayre A, et al. Angiogenesis in the atherosclerotic plaque [J]. Redox Biol, 2017, 12: 18-34.
33
Wei Y, Schober A, Weber C. Pathogenic arterial remodeling: the good and bad of microRNAs [J]. Am J Physiol Heart Circ Physiol, 2013, 4(8): H1050-9.
34
Madrigal-Matute J, Rotllan N, Aranda JF, et al. MicroRNAs and atherosclerosis [J]. Curr Atheroscler Rep, 2013, 15(5): 322.
35
Urbich C, Kaluza D, Frömel T, et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A [J]. Blood, 2012, 119(6): 1607-1616.
36
Chang SH, Hla T. Gene regulation by RNA binding proteins and microRNAs in angiogenesis [J]. Trends Mol Med, 2011, 17(11): 650-658.
[1] 马晓菊, 梁潇, 段云友, 袁丽君, 赵萍. NBAV脂质纳泡对ApoE -/-小鼠动脉粥样硬化病变的评估和干预[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 608-616.
[2] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[3] 赵小欢, 尚志英, 段文超, 张晓燕, 孙东强. 无创通气治疗COPD 并发呼吸衰竭不同预后患者外周血MicroRNA及炎性因子水平分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 777-780.
[4] 蒋嫒, 王红梅, 孔祥. miR-15a-5p靶向HPSE2促进宫颈癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 11-18.
[5] 汤峥丽, 王芳, 王唯坚. 中老年人群幽门螺杆菌感染对非酒精性脂肪肝及冠状动脉粥样硬化影响的关联性分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 137-140.
[6] 石佳娜, 钱琳艳, 姬凯悦, 祁金文, 胡情, 孙佳斌. 从PVAT 白色脂肪棕色化角度探讨中药在防治动脉粥样硬化中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 853-858.
[7] 温绍敏, 王雅晳, 施依璐, 段莎莎, 云书荣, 张小杉. 靶向超声造影技术在动脉粥样硬化治疗中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 496-499.
[8] 麻凌峰, 张小杉, 施依璐, 段莎莎, 魏颖, 夏士林, 张敏洁, 王雅皙. 纳米泡载药靶向治疗动脉粥样硬化的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 214-218.
[9] 张洪, 王宏宇. 神经酰胺与心脏和血管疾病关系的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(11): 1202-1205.
[10] 王林源, 熊鑫, 杨坤, 邓勇志. 基于冠状动脉CT血管成像的影像组学列线图鉴别诊断易损斑块的价值[J/OL]. 中华诊断学电子杂志, 2024, 12(01): 1-8.
[11] 肖韩艳, 王子杰, 王岳, 李岩. 槲皮素通过抑制小鼠骨髓来源泡沫细胞焦亡抗动脉粥样硬化的研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(01): 26-32.
[12] 吴晓明, 翟仰魁, 王娟, 张硕, 许杰, 潘从清. 男性2 型糖尿病患者空腹C 肽和定量胰岛素敏感性检测指数与血浆致动脉粥样硬化指数的相关性[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 288-294.
[13] 唐欣, 翟文海, 王润婷, 周胜宇, 靳航. 补体在缺血性卒中疾病中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 382-392.
[14] 陈绚, 欧宁江, 叶洁梅, 邓瑾倩. 纤维蛋白原β链启动因子基因多态性与颈动脉粥样硬化斑块稳定性的关联性研究[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 33-39.
[15] 曾德阳, 董贺千禧, 陶凉, 肖红艳, 曾燕, 鄢华. 中年心血管危险因素增加阿尔茨海默病相关痴呆的流行病学和机制研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 6-13.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?