切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (12) : 1284 -1288. doi: 10.3877/cma.j.issn.1674-0785.2022.12.023

综述

肾结石与高血压关系的研究进展
靳潇潇1, 郑聪2, 何文强2,()   
  1. 1. 450046 郑州,河南中医药大学
    2. 450046 郑州,河南中医药大学;450003 郑州,河南中医药大学第一附属医院泌尿外科二区
  • 收稿日期:2021-09-08 出版日期:2022-12-15
  • 通信作者: 何文强
  • 基金资助:
    河南省重点研发与推广专项(科技攻关)(182102310059)

Progress in understanding of relationship between nephrostasis and hypertension

Xiaoxiao Jin1, Cong Zheng2, Wenqiang He2,()   

  1. 1. Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
    2. Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; Department of Urology, The First Affiliated Hospital of Henan University of TCM, Zhengzhou 450003, China
  • Received:2021-09-08 Published:2022-12-15
  • Corresponding author: Wenqiang He
引用本文:

靳潇潇, 郑聪, 何文强. 肾结石与高血压关系的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1284-1288.

Xiaoxiao Jin, Cong Zheng, Wenqiang He. Progress in understanding of relationship between nephrostasis and hypertension[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(12): 1284-1288.

肾结石可导致新发高血压的形成,并且可加速高血压的发展;而高血压又是肾结石的危险因素。两者发生发展存在共同途径以及一定的联系,因此本文从高尿钙、胰岛素抵抗、炎症和细胞因子以及氧化应激和手术等方面对两者可能存在的联系进行综述,以便为更好的预防疾病的发生发展和未来的研究提供一些可行的思路。

Kidney stones can lead to the development of new-onset hypertension and accelerate its progression; hypertension, in turn, is a risk factor for kidney stones. Since there are common pathways and certain links between the development of both, this paper reviews the possible links between the two in terms of high urinary calcium, insulin resistance, inflammation, and cytokines, as well as oxidative stress and surgery, in order to provide some feasible ideas for better prevention of these diseases and their future research.

图1 钙代谢紊乱
图2 胰岛素抵抗相关机制 注:CELA2A为胰弹性蛋白酶糜蛋白酶样弹性蛋白酶家族成员2;TNF-α为肿瘤坏死因子;MS为代谢综合症
图3 炎症、氧化应激等相关途径 注:RAAS为肾素-血管紧张素-醛固酮系统;ROS为活性氧;NLRP3为炎症小体;IL-18为白介素-18;OPN为骨桥蛋白;MCP-1为单核细胞趋化蛋白-1
1
Khan SR, Pearle MS, Robertson WG, et al. Kidney stones [J]. Nat Rev Dis Primers, 2016, 2: 16008.
2
Wiener SV, Ho SP, Stoller ML. Beginnings of nephrolithiasis: insights into the past, present and future of Randall's plaque formation research [J]. Curr Opin Nephrol Hypertens, 2018, 27(4): 236-242.
3
李永超, 李杨. 肾结石Randall斑块研究进展 [J]. 中南大学学报(医学版), 2020, 45(4): 435-439.
4
Zeng G, Mai Z, Xia S, et al. Prevalence of kidney stones in China: an ultrasonography based cross-sectional study [J]. BJU Int, 2017, 120(1): 109-116.
5
Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors [J]. Rev Urol, 2010, 12(2-3): e86-96.
6
Ping H, Lu N, Wang M, et al. New-onset metabolic risk factors and the incidence of kidney stones: a prospective cohort study [J]. BJU Int, 2019, 124(6): 1028-1033.
7
Kittanamongkolchai W, Mara KC, Mehta RA, et al. Risk of hypertension among first-time symptomatic kidney stone formers [J]. Clin J Am Soc Nephrol, 2017, 12(3): 476-482.
8
Shang W, Li Y, Ren Y, et al. Nephrolithiasis and risk of hypertension: a meta-analysis of observational studies [J]. BMC Nephrol, 2017, 18(1):344.
9
Eisner BH, Porten SP, Bechis SK, et al. Hypertension is associated with increased urinary calcium excretion in patients with nephrolithiasis [J]. J Urol, 2010, 183(2): 576-579.
10
靳潇潇, 何文强. 含钙肾结石与骨密度之间关系的研究现状 [J]. 中国骨质疏松杂志, 2021, 27(2): 303-307.
11
Borghi L, Schianchi T, Meschi T, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria [J]. N Engl J Med, 2002, 346(2): 77-84.
12
Nouvenne A, Meschi T, Prati B, et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial [J]. Am J Clin Nutr, 2010, 91(3): 565-570.
13
Hartman C, Friedlander JI, Moreira DM, et al. Does hypertension impact 24-hour urine parameters in patients with nephrolithiasis? [J]. Urology, 2015, 85(3): 539-543.
14
Kohjimoto Y, Sasaki Y, Iguchi M, et al. Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan [J]. Am J Kidney Dis, 2013, 61(6): 923-929.
15
Liu YT, Yang PY, Yang YW, et al. The association of nephrolithiasis with metabolic syndrome and its components: a cross-sectional analysis [J]. Ther Clin Risk Manag, 2017, 13: 41-48.
16
Zafar U, Khaliq S, Ahmad HU, et al. Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links [J]. Hormones, 2018, 17(3): 299-313.
17
Brown A E, Walker M. Genetics of insulin resistance and the metabolic syndrome [J]. Curr Cardiol Rep, 2016, 18(8): 75.
18
Strohmaier WL, Wrobel BM, Schubert G. Overweight, insulin resistance and blood pressure (parameters of the metabolic syndrome) in uric acid urolithiasis [J]. Urol Res, 2012, 40(2): 171-175.
19
Evan AP, Worcester EM, Coe FL, et al. Mechanisms of human kidney stone formation [J]. Urolithiasis, 2015, 43 Suppl 1(0 1):19-32.
20
Esteghamat F, Broughton JS, Smith E, et al. CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation [J]. Nat Genet, 2019, 51(8): 1233-1243.
21
Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation [J]. Nat Rev Nephrol, 2021, 17(6): 417-433.
22
Yang H, Xie T, Li D, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway [J]. Mol Metab, 2019, 23: 24-36.
23
Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy [J]. J Hepatol, 2016, 64(6): 1403-1415.
24
Zhang X, Fan L, Wu J, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization [J]. J Hepatol, 2019, 71(1): 163-174.
25
Org E, Blum Y, Kasela S, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort [J]. Genome Biol, 2017, 18(1): 70.
26
Ma MC, Chen YS, Huang HS. Erythrocyte oxidative stress in patients with calcium oxalate stones correlates with stone size and renal tubular damage [J]. Urology, 2014, 83(2): 510 e9-17.
27
Joshi S, Khan SR. Opportunities for future therapeutic interventions for hyperoxaluria: targeting oxidative stress [J]. Expert Opin Ther Targets, 2019, 23(5): 379-391.
28
叶涛, 叶章群. 炎症和氧化应激反应与肾结石形成的研究进展 [J]. 中华泌尿外科杂志, 2018, 39(9): 711-713.
29
Wang Y, Sun C, Li C, et al. Urinary MCP-1、HMGB1 increased in calcium nephrolithiasis patients and the influence of hypercalciuria on the production of the two cytokines [J]. Urolithiasis, 2017, 45(2): 159-175.
30
Fukumoto J, Fukumoto I, Parthasarathy PT, et al. NLRP3 deletion protects from hyperoxia-induced acute lung injury [J]. Am J Physiol Cell Physiol, 2013, 305(2): C182-C189.
31
Mulay S R, Kulkarni O P, Rupanagudi K V, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion [J]. J Clin Invest, 2013, 123(1): 236-246.
32
Umekawa T, Hatanaka Y, Kurita T, et al. Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys [J]. J Am Soc Nephrol, 2004, 15(3): 635-644.
33
Dominguez-Gutierrez PR, Kusmartsev S, Canales BK, et al. Calcium oxalate differentiates human monocytes into inflammatory M1 macrophages [J]. Front Immunol, 2018, 9: 1863.
34
Liu Q, Liu Y, Guan X, et al. Effect of M2 macrophages on injury and apoptosis of renal tubular epithelial cells induced by calcium oxalate crystals [J]. Kidney Blood Press Res, 2019, 44(4): 777-791.
35
Small H Y, Migliarino S, Czesnikiewicz-Guzik M, et al. Hypertension: focus on autoimmunity and oxidative stress [J]. Free Radic Biol Med, 2018, 125: 104-115.
36
Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? [J]. Am J Physiol Regul Integr Comp Physiol, 2005, 289(4): R913-R935.
37
Montezano AC, Dulak-Lis M, Tsiropoulou S, et al. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies [J]. Can J Cardiol, 2015, 31(5): 631-641.
38
陈颖妹, 马建林. 同型半胱氨酸、氧化应激与高血压关系的研究进展 [J]. 中国循证心血管医学杂志, 2020, 12(7): 895-896.
39
Rudemiller NP, Crowley SD. Interactions between the immune and the renin-angiotensin systems in hypertension [J]. Hypertension, 2016, 68(2): 289-296.
40
Justin Rucker A, Crowley SD. The role of macrophages in hypertension and its complications [J]. Pflugers Arch, 2017, 469(3-4): 419-430.
41
Chien TM, Lu YM, Chou YH, et al. Percutaneous nephrolithotomy increases the risk of new-onset hypertension: a nationwide 6-year follow-up study [J]. Urology, 2016, 97: 61-65.
42
Lu YM, Chien TM, Chou YH, et al. Is extracorporeal shock wave lithotripsy really safe in long-term follow-up? a nationwide retrospective 6-year age-matched non-randomized study [J]. Urol Int, 2017, 98(4): 397-402.
43
Ng CF, Luke S, Yee CH, et al. Extracorporeal shockwave lithotripsy could lead to a prolonged increase in the renal fibrotic process of up to 2 years [J]. J Endourol, 2018, 32(3): 223-229.
44
Fankhauser CD, Kranzbühler B, Poyet C, et al. Long-term adverse effects of extracorporeal shock-wave lithotripsy for nephrolithiasis and ureterolithiasis: a systematic review [J]. Urology, 2015, 85(5): 991-1006.
45
Qin B, Wang Q, Lu Y, et al. Losartan ameliorates calcium oxalate-induced elevation of stone-related proteins in renal tubular cells by Inhibiting NADPH oxidase and oxidative stress [J]. Oxid Med Cell Longev, 2018: 1271864.
46
Zhu J, Wang Q, Li C, et al. Inhibiting inflammation and modulating oxidative stress in oxalate-induced nephrolithiasis with the Nrf2 activator dimethyl fumarate [J]. Free Radic Biol Med, 2019, 134: 9-22.
47
庞翀, 陈群娟. 缬沙坦联合富马酸比索洛尔对老年高血压心脏病患者相关生化指标、炎症因子及氧化应激水平的影响 [J]. 中国老年学杂志, 2021, 41(4): 673-676.
48
Alexander RT, Mcarthur E, Jandoc R, et al. Antihypertensive medications and the risk of kidney stones in older adults: a retrospective cohort study [J]. Hypertens Res, 2017, 40(9): 837-842.
[1] 郑鹏, 吴赛萍, 谢秀璋, 史庆丰. 术前预测感染性肾结石列线图模型的构建及验证[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 299-306.
[2] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[3] 曹智, 朱希望, 王尉, 张辉, 杨成林, 张小明. 经皮肾镜碎石取石术中不同肾盂内压力与围术期并发症相关性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 616-620.
[4] 方道成, 胡媛媛. 钙和维生素D与肾结石形成关系的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 653-656.
[5] 张文涛, 陈俊明, 秦海生, 杨胜进, 余朝辉, 白冰, 王世洋, 段彩莲, 王震. 4.8 F可视肾镜在飞行人员肾脏小结石中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 593-596.
[6] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[7] 徐哲, 罗杰, 吴强, 李忠, 王晓伟, 郑硕, 郝晓东, 王照. 腹主动脉钙化患者肾结石成分特点及危险因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 481-485.
[8] 张磊, 米洋, 王昌喜, 李曜行, 王小东, 牛旭东, 王靖宇. 一次性输尿管软镜通路鞘两种置入深度的临床研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 486-489,494.
[9] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[10] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[13] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[14] 张曦才, 曹先德. 经皮肾镜取石术治疗无积水肾结石中皮肾通道建立的应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 911-915.
[15] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
阅读次数
全文


摘要