切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 744 -748. doi: 10.3877/cma.j.issn.1674-0785.2023.06.020

综述

氢气治疗心肌缺血再灌注损伤的作用机制及展望
张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳()   
  1. 010110 呼和浩特,内蒙古医科大学第一临床医学院
    010050 呼和浩特,内蒙古医科大学附属医院超声科
  • 收稿日期:2022-05-20 出版日期:2023-06-15
  • 通信作者: 王雅晳
  • 基金资助:
    中央引导地方科技发展资金项目(2021ZY0026); 内蒙古自治区教育厅“高校青年科技英才”项目(NJYT22021); 内蒙古自治区医疗卫生科技计划项目(202201310)

Hydrogen for treatment of myocardial ischemia-reperfusion injury: mechanism and prospect

Minjie Zhang, Xiaoshan Zhang, Shasha Duan, Yilu Shi, Jie Zhao, Tianhao Bai, Yaxi Wang()   

  1. Department of Pediatrics of Xuzhou Central Hospital, Xuzhou 221009, China
    Department of Ultrasound, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
  • Received:2022-05-20 Published:2023-06-15
  • Corresponding author: Yaxi Wang
引用本文:

张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.

Minjie Zhang, Xiaoshan Zhang, Shasha Duan, Yilu Shi, Jie Zhao, Tianhao Bai, Yaxi Wang. Hydrogen for treatment of myocardial ischemia-reperfusion injury: mechanism and prospect[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(06): 744-748.

心肌缺血再灌注损伤是导致心血管疾病心肌损伤的最重要原因,常见于冠心病和心脏手术围手术期,发生率和死亡率高,其机制涉及氧化应激、炎性反应和细胞凋亡等。目前的治疗措施包括药物治疗和物理治疗,但效果不佳。氢气作为一种小分子无毒还原性气体,在细胞缺血再灌注损伤中有明显保护作用,是未来治疗缺血再灌注损伤的重要方向,本文就氢气治疗心肌缺血再灌注损伤的作用机制及其未来应用临床的初步展望进行综述。

Myocardial ischemia-reperfusion injury (MIRI) is one of the key causes of myocardial injury, secondary to cardiovascular diseases, which is mostly present in coronary heart disease and during the perioperative period of cardiac surgery. MIRI elicits oxidative stress, inflammatory activity, and cell apoptosis, with a high incidence and mortality rate. The current treatments for MIRI include medicines and physical therapy, but with unsatisfactory effects. As a small molecule non-toxic reducing gas, hydrogen has a clear protective effect against cell ischemia-reperfusion, and has therefore become a promising treatment for MIRI. This paper reviews the mechanism of hydrogen for the treatment of MIRI and the preliminary prospect of its clinical application in the future.

1
Nie C, Ding X, A R, et al. Hydrogen gas inhalation alleviates myocardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyroptosis in rats [J]. Life Sci, 2021, 272: 119248.
2
Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association [J]. Circulation, 2019, 139(10): e56-e528.
3
Lv S, Li X, Zhao S, et al. The role of the signaling pathways involved in the protective effect of exogenous hydrogen sulfide on myocardial ischemia-reperfusion injury [J]. Front Cell Dev Biol, 2021, 9: 723569.
4
Chen L, Ma K, Fan H, et al. Exogenous hydrogen sulfide protects against hepatic ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress and cell apoptosis [J]. Exp Ther Med, 2021, 22(2): 799.
5
Tong J, Zhang Y, Yu P, et al. Protective effect of hydrogen gas on mouse hind limb ischemia-reperfusion injury [J]. J Surg Res, 2021, 266: 148-159.
6
钟灵, 王振富, 肖本见. 恩施板党对脑缺血/再灌注损伤大鼠抗氧化作用的研究 [J]. 中国应用生理学杂志, 2012, 28(4): 314-316.
7
Kimura A, Suehiro K, Mukai A, et al. Protective effects of hydrogen gas against spinal cord ischemia-reperfusion injury [J]. J Thorac Cardiovasc Surg, 2022, 164(6): e269-e283.
8
Zhang P, Yu Y, Wang P, et al. Role of hydrogen sulfide in myocardial ischemia-reperfusion injury [J]. J Cardiovasc Pharmacol, 2021, 77(2): 130-141.
9
陈逸寒.氢气微泡减轻心肌缺血再灌注损伤的研究 [D].南方医科大学, 2015.
10
Zhang ML, Peng W, Ni JQ, et al. Recent advances in the protective role of hydrogen sulfide in myocardial ischemia/reperfusion injury: a narrative review [J]. Med Gas Res, 2021, 11(2): 83-87.
11
Li L, Li X, Zhang Z, et al. Protective mechanism and clinical application of hydrogen in myocardial ischemia-reperfusion injury [J]. Pak J Biol Sci, 2020, 23(2): 103-112.
12
Bellis A, Mauro C, Barbato E, et al. The rationale of neprilysin inhibition in prevention of myocardial ischemia-reperfusion injury during ST-elevation myocardial infarction [J]. Cells, 2020, 9(9).
13
Wang R, Wang M, Zhou J, et al. Saponins in Chinese herbal medicine exerts protection in myocardial ischemia-reperfusion injury: possible mechanism and target analysis [J]. Front Pharmacol, 2020, 11: 570867.
14
Zhang C, He M, Ni L, et al. The role of arachidonic acid metabolism in myocardial ischemia-reperfusion injury [J]. Cell Biochem Biophys, 2020, 78(3): 255-265.
15
Schofield ZV, Woodruff TM, Halai R, et al. Neutrophils--a key component of ischemia-reperfusion injury [J]. Shock, 2013, 40(6): 463-70.
16
Boag SE, Andreano E, Spyridopoulos I. Lymphocyte communication in myocardial ischemia/reperfusion injury [J]. Antioxid Redox Signal, 2017, 26(12): 660-675.
17
Arslan F, de Kleijn DP, Timmers L, et al. Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets [J]. Curr Pharm Des, 2008, 14(12): 1205-16.
18
刘丹勇, 夏正远, 韩荣辉, 等. 心肌缺血再灌注损伤机制研究的回顾与展望 [J].中国动脉硬化杂志, 2020, 28(12): 1013-1019.
19
李思源, 刘振兵. 氧化应激在心肌缺血再灌注损伤中的研究进展 [J].山东医药, 2021, 61(22): 92-95.
20
Andreadou I, Schulz R, Papapetropoulos A, et al. The role of mitochondrial reactive oxygen species, NO and H2 S in ischaemia/reperfusion injury and cardioprotection [J]. J Cell Mol Med, 2020, 24(12): 6510-6522.
21
Tanno M, Kuno A, Ishikawa S, et al. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2) [J]. J Biol Chem, 2014, 289(42): 29285-96.
22
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer, 1972, 26(4): 239-57.
23
魏成露, 冯庆敏, 陈宋程, 等. 心肌缺血再灌注损伤分子机制的研究进展 [J].海南医学院学报, 2022, 28(16): 1268-1274.
24
郭双, 邢栋, 吕勃. 程序性坏死、细胞焦亡与心肌缺血再灌注损伤 [J].心血管病学进展, 2020, 41(12): 1255-1259+1289.
25
Cave A, Garlick P. Re: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium [J]. J Mol Cell Cardiol, 2000, 32(9): 1759-60.
26
孙智慧, 郑良荣. 基因治疗在心肌缺血再灌注损伤中的研究进展 [J].国际内科学杂志, 2009, 36(2): 69-73.
27
李博, 刘锦, 杨童, 等. 纳米气体在癌症治疗领域的应用 [J].医学综述, 2022, 28(5): 915-921.
28
Hu Y, Xiang J, Su L, et al. The regulation of nitric oxide in tumor progression and therapy [J]. J Int Med Res, 2020,48(2): 300060520905985.
29
Lee ZW, Zhou J, Chen CS, et al. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo [J]. PLoS One, 2011, 6(6): e21077.
30
Pryor WA, Houk KN, Foote CS, et al. Free radical biology and medicine: it's a gas, man![J]. Am J Physiol Regul Integr Comp Physiol, 2006, 291(3): R491-511.
31
Zhang Y, Xu J, Yang H. Hydrogen: an endogenous regulator of liver homeostasis [J]. Front Pharmacol, 2020, 11: 877.
32
Gokalp N, Basaklar AC, Sonmez K, et al. Protective effect of hydrogen rich saline solution on experimental ovarian ischemia reperfusion model in rats [J]. J Pediatr Surg, 2017, 52(3): 492-497.
33
Sano M, Tamura T. Hydrogen gas therapy: from preclinical studies to clinical trials [J]. Curr Pharm Des, 2021, 27(5): 650-658.
34
He Y, Zhang B, Chen Y, et al. Image-guided hydrogen gas delivery for protection from myocardial ischemia-reperfusion injury via microbubbles [J]. ACS Appl Mater Interfaces, 2017,9(25):21190-21199.
35
Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer [J]. Science, 1975, 190(4210): 152-4.
36
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals [J]. Nat Med, 2007, 13(6): 688-94.
37
Katsumata Y, Sano F, Abe T, et al. The effects of hydrogen gas inhalation on adverse left ventricular remodeling after percutaneous coronary intervention for st-elevated myocardial infarction-first pilot study in humans [J]. Circ J, 2017, 81(7): 940-947.
38
Kawamura M, Imamura R, Kobayashi Y, et al. Oral administration of si-based agent attenuates oxidative stress and ischemia-reperfusion injury in a rat model: a novel hydrogen administration method [J]. Front Med (Lausanne), 2020, 7: 95.
39
Yi C, Song M, Sun L, et al. Asiatic acid alleviates myocardial ischemia-reperfusion injury by inhibiting the ROS-mediated mitochondria-dependent apoptosis pathway [J]. Oxid Med Cell Longev, 2022, 2022: 3267450.
40
Terawaki H, Zhu WJ, Matsuyama Y, et al. Effect of a hydrogen (H2)-enriched solution on the albumin redox of hemodialysis patients [J]. Hemodial Int, 2014, 18(2): 459-66.
41
Barančík M, Grešová L, Barteková M, et al. Nrf2 as a key player of redox regulation in cardiovascular diseases [J]. Physiol Res, 2016, 65 Suppl 1: S1-S10.
42
Papp D, Lenti K, Módos D, et al. The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops [J]. FEBS Lett, 2012, 586(13): 1795-802.
43
Richardson BG, Jain AD, Speltz TE, et al. Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway [J]. Bioorg Med Chem Lett, 2015, 25(11): 2261-8.
44
Miyata T, Takizawa S, van Ypersele de Strihou C. Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets [J]. Am J Physiol Cell Physiol, 2011, 300(2): C226-31.
45
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species [J]. Transplant Rev (Orlando), 2012, 26(2): 103-14.
46
Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later [J]. Biochem Pharmacol, 2006, 72(11): 1493-505.
47
Qin ZX, Yu P, Qian DH, et al. Hydrogen-rich saline prevents neointima formation after carotid balloon injury by suppressing ROS and the TNF-α/NF-κB pathway [J]. Atherosclerosis, 2012, 220(2): 343-50.
48
李淑英, 李慧, 倪娟. 氢气对心肌缺血再灌注损伤的保护作用 [J].实用医学杂志,2018, 34(15): 2618-2621.
49
Lu L, Wei P, Cao Y, et al. Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury [J]. Genet Mol Res, 2016, 15(4).
50
Valen G. Signal transduction through nuclear factor kappa B in ischemia-reperfusion and heart failure [J]. Basic Res Cardiol, 2004, 99(1):1-7.
51
Lee D, Choi JI. Hydrogen-rich water improves cognitive ability and induces antioxidative, antiapoptotic, and anti-inflammatory effects in an acute ischemia-reperfusion injury mouse model [J]. Biomed Res Int, 2021, 2021: 9956938.
52
Li JY, Liu SQ, Yao RQ, et al. A novel insight into the fate of cardiomyocytes in ischemia-reperfusion injury: from iron metabolism to ferroptosis [J]. Front Cell Dev Biol, 2021, 9: 799499.
53
Zhang MQ, Zheng YL, Chen H, et al. Sodium tanshinone IIA sulfonate protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway [J]. Acta Pharmacol Sin, 2013, 34(11): 1386-96.
54
Li L, Li X, Zhang Z, et al. Effects of hydrogen-rich water on the PI3K/AKT signaling pathway in rats with myocardial ischemia-reperfusion injury [J]. Curr Mol Med, 2020, 20(5): 396-406.
55
Fix SM, Borden MA, Dayton PA. Therapeutic gas delivery via microbubbles and liposomes [J]. J Control Release, 2015, 209: 139-49.
56
Kooiman K, Roovers S, Langeveld S, et al. Ultrasound-responsive cavitation nuclei for therapy and drug delivery [J]. Ultrasound Med Biol, 2020, 46(6): 1296-1325.
57
Versluis M, Stride E, Lajoinie G, et al. Ultrasound contrast agent modeling: a review [J]. Ultrasound Med Biol, 2020, 46(9): 2117-2144.
[1] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[2] 钟轼, 李斌飞, 温君琳, 古晨, 廖小卒. 右美托咪定缓解神经病理性疼痛作用机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(03): 237-240.
[3] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[4] 杨斌, 胡光太, 周纲. 完整剥离和横断疝囊在单侧腹股沟斜疝经腹腹膜前修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 42-46.
[5] 任伙明, 苏舒, 张健, 范彬. 腹腔镜经腹腹膜前与疝环充填式修补术治疗腹股沟疝对比分析[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 682-686.
[6] 刘成飞, 徐少强, 姚添, 黄河. 谷胱甘肽在结直肠癌增殖转移及诊疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2022, 11(06): 506-510.
[7] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[8] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[9] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[10] 郑丽华, 钱一菁, 黄崇甄, 周春娜. 山茱萸环烯醚萜苷改善6-OHDA诱导帕金森病细胞模型的损伤[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 324-331.
[11] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[12] 孙凤兰, 周萍, 程兴璞, 张倩倩. 腹腔镜全子宫切除术对子宫肌瘤患者机体氧化应激损伤及术后并发症的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 149-153.
[13] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[14] 靳潇潇, 郑聪, 何文强. 肾结石与高血压关系的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1284-1288.
[15] 买买提·依斯热依力, 依力汗·依明, 王永康, 阿巴伯克力·乌斯曼, 艾克拜尔·艾力, 李义亮, 克力木·阿不都热依木. 氧化应激对3T3-L1前脂肪细胞中GLP-1/DPP-4信号通路以及炎症因子表达的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 186-191.
阅读次数
全文


摘要