切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 471 -478. doi: 10.3877/cma.j.issn.1674-0785.2023.04.018

综述

n-3多不饱和脂肪酸脑保护机制研究进展
沈丘月, 侯新琳()   
  1. 100034 北京,北京大学第一医院儿科
  • 收稿日期:2022-04-14 出版日期:2023-04-15
  • 通信作者: 侯新琳

Advances in understanding of brain protective mechanisms of n-3 polyunsaturated fatty acids

Qiuyue Shen, Xinlin Hou()   

  1. Department of Pediatrics, Peking University First Hospital, 100034 Beijing, China
  • Received:2022-04-14 Published:2023-04-15
  • Corresponding author: Xinlin Hou
引用本文:

沈丘月, 侯新琳. n-3多不饱和脂肪酸脑保护机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 471-478.

Qiuyue Shen, Xinlin Hou. Advances in understanding of brain protective mechanisms of n-3 polyunsaturated fatty acids[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(04): 471-478.

n-3多不饱和脂肪酸(n-3 PUFAs)在脑发育和包括新生儿脑损伤、孤独症谱系障碍、阿尔茨海默病、精神分裂症在内的神经系统疾病的发生发展中起到重要作用。本文综述了n-3多不饱和脂肪酸发挥脑保护作用的机制进展,包括调节突触可塑性、膜受体功能;参与信号转导途径;减轻炎症反应和产生多种脂质介质等,为找寻疾病治疗靶点并进一步进行临床转化提供理论基础。

n-3 polyunsaturated fatty acids (PUFAs) play a variety of roles in brain development and the treatment of neurological diseases, including neonatal brain injury, autism spectrum disorder, Alzheimer's disease, schizophrenia, etc. The mechanisms underlying the protective effect of n-3 PUFAs on the brain have always been a research hotspot. The possible mechanisms include regulating synaptic plasticity and membrane receptor function, modulating signal transduction pathways, anti-inflammatory properties, and producing lipid mediators. This review reviews the progress in the understanding of the brain protective mechanisms of n-3 PUFAs, so as to help identify therapeutic targets for the relevant diseases and promote clinical translation.

1
Sprecher H. Metabolism of highly unsaturated n-3 and n-6 fatty acids [J]. Biochim Biophys Acta, 2000, 1486(2-3): 219-231.
2
Layé S, Nadjar A, Joffre C, et al. Anti-inflammatory effects of Omega-3 fatty acids in the brain: physiological mechanisms and relevance to pharmacology [J]. Pharmacol Rev, 2018, 70(1): 12-38.
3
Brenna JT, Carlson SE. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development [J]. J Hum Evol, 2014, 77: 99-106.
4
Chen CT, Kitson AP, Hopperton KE, et al. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain [J]. Sci Rep, 2015, 5: 15791.
5
Nguyen LN, Ma D, Shui G, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid [J]. Nature, 2014, 509(7501): 503-506.
6
Sandoval A, Fraisl P, Arias-Barrau E, et al. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking [J]. Arch Biochem Biophys, 2008, 477(2): 363-371.
7
Balakrishnan J, Kannan S, Govindasamy A. Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain [J]. Nutr Res, 2021, 85: 119-134.
8
Ogundipe E, Tusor N, Wang Y, et al. Randomized controlled trial of brain specific fatty acid supplementation in pregnant women increases brain volumes on MRI scans of their newborn infants [J]. Prostaglandins Leukot Essent Fatty Acids, 2018, 138: 6-13.
9
Henriksen C, Haugholt K, Lindgren M, et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid [J]. Pediatrics, 2008, 121(6): 1137-1145.
10
Heath RJ, Klevebro S, Wood TR. Maternal and neonatal polyunsaturated fatty acid intake and risk of neurodevelopmental impairment in premature infants [J]. Int J Mol Sci, 2022, 23(2): 700.
11
Szeszko PR, McNamara RK, Gallego JA, et al. Longitudinal investigation of the relationship between omega-3 polyunsaturated fatty acids and neuropsychological functioning in recent-onset psychosis: A randomized clinical trial [J]. Schizophr Res, 2021, 228: 180-187.
12
Chang JP, Su KP, Mondelli V, et al. High-dose eicosapentaenoic acid (EPA) improves attention and vigilance in children and adolescents with attention deficit hyperactivity disorder (ADHD) and low endogenous EPA levels [J]. Transl Psychiatry, 2019, 9(1): 303.
13
Tang W, Wang Y, Xu F, et al. Omega-3 fatty acids ameliorate cognitive dysfunction in schizophrenia patients with metabolic syndrome [J]. Brain Behav Immun, 2020, 88: 529-534.
14
Witte AV, Kerti L, Hermannstädter HM, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults [J]. Cereb Cortex, 2014, 24(11): 3059-3068.
15
Bowman GL, Silbert LC, Dodge HH, et al. Randomized trial of marine n-3 polyunsaturated fatty acids for the prevention of cerebral small vessel disease and inflammation in aging (PUFA Trial): rationale, design and baseline results [J]. Nutrients, 2019, 11(4): 735.
16
Freund Levi Y, Vedin I, Cederholm T, et al. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer's disease: the OmegAD study [J]. J Intern Med, 2014, 275(4): 428-436.
17
Faxén-Irving G, Freund-Levi Y, Eriksdotter-Jönhagen M, et al. Effects on transthyretin in plasma and cerebrospinal fluid by DHA-rich n - 3 fatty acid supplementation in patients with Alzheimer's disease: the OmegAD study [J]. J Alzheimers Dis, 2013, 36(1): 1-6.
18
Ibrahim FAS, Ghebremeskel K, Abdel-Rahman ME, et al. The differential effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on seizure frequency in patients with drug-resistant epilepsy-A randomized, double-blind, placebo-controlled trial [J]. Epilepsy Behav, 2018, 87: 32-38.
19
Puri BK, Koepp MJ, Holmes J, et al. A 31-phosphorus neurospectroscopy study of omega-3 long-chain polyunsaturated fatty acid intervention with eicosapentaenoic acid and docosahexaenoic acid in patients with chronic refractory epilepsy [J]. Prostaglandins Leukot Essent Fatty Acids, 2007, 77(2): 105-107.
20
Stillwell W, Shaikh SR, Zerouga M, et al. Docosahexaenoic acid affects cell signaling by altering lipid rafts [J]. Reprod Nutr Dev, 2005, 45(5): 559-579.
21
Darios F, Davletov B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3 [J]. Nature, 2006, 440(7085): 813-817.
22
Davletov B, Connell E, Darios F. Regulation of SNARE fusion machinery by fatty acids [J]. Cell Mol Life Sci, 2007, 64(13): 1597-1608.
23
Pérez , Peñaloza-Sancho V, Ahumada J, et al. N-3 polyunsaturated fatty acid supplementation restored impaired memory and GABAergic synaptic efficacy in the hippocampus of stressed rats [J]. Nutr Neurosci, 2018, 21(8): 556-569.
24
Serrano-García N, Fernández-Valverde F, Luis-Garcia ER, et al. Docosahexaenoic acid protection in a rotenone induced Parkinson's model: prevention of tubulin and synaptophysin loss, but no association with mitochondrial function [J]. Neurochem Int, 2018, 121: 26-37.
25
Barón-Mendoza I, González-Arenas A. Relationship between the effect of polyunsaturated fatty acids (PUFAs) on brain plasticity and the improvement on cognition and behavior in individuals with autism spectrum disorder [J]. Nutr Neurosci, 2022, 25(2): 387-410.
26
Shi Z, Xie Y, Ren H, et al. Fish oil treatment reduces chronic alcohol exposure induced synaptic changes [J]. Addict Biol, 2019, 24(4): 577-589.
27
Carbone BE, Abouleish M, Watters KE, et al. Synaptic connectivity and cortical maturation are promoted by the ω-3 fatty acid docosahexaenoic acid [J]. Cereb Cortex, 2020, 30(1): 226-240.
28
Madore C, Leyrolle Q, Morel L, et al. Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain [J]. Nat Commun, 2020, 11(1): 6133.
29
Cao D, Kevala K, Kim J, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function [J]. J Neurochem, 2009, 111(2): 510-521.
30
Aryal S, Hussain S, Drevon CA, et al. Omega-3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses [J]. Eur J Neurosci, 2019, 49(1): 40-50.
31
Rapoport SI. Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo [J]. Prostaglandins Leukot Essent Fatty Acids, 2013, 88(1): 79-85.
32
Shalini S, Chew W, Rajkumar R, et al. Role of constitutive calcium-independent phospholipase A2 beta in hippocampo-prefrontal cortical long term potentiation and spatial working memory [J]. Neurochem Int, 2014, 78: 96-104.
33
Healy-Stoffel M, Levant B. N-3 (Omega-3) fatty acids: effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders [J]. CNS Neurol Disord Drug Targets, 2018, 17(3): 216-232.
34
de Theije CGM, van den Elsen LWJ, Willemsen LEM, et al. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice [J]. Neuropharmacology, 2015, 90: 15-22.
35
Tang M, Zhang M, Wang L, et al. Maternal dietary of n-3 polyunsaturated fatty acids affects the neurogenesis and neurochemical in female rat at weaning [J]. Prostaglandins Leukot Essent Fatty Acids, 2018, 128: 11-20.
36
Chew WS, Ong WY. Regulation of calcium-independent phospholipase A2 expression by adrenoceptors and sterol regulatory element binding protein-potential crosstalk between sterol and glycerophospholipid mediators [J]. Mol Neurobiol, 2016, 53(1): 500-517.
37
Sidhu VK, Huang BX, Desai A, et al. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome [J]. Neurobiol Aging, 2016, 41: 73-85.
38
Lengqvist J, Mata De Urquiza A, Bergman A, et al. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain [J]. Mol Cell Proteomics, 2004, 3(7): 692-703.
39
Chambrier C, Bastard J, Rieusset J, et al. Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma [J]. Obes Res, 2002, 10(6): 518-525.
40
Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats [J]. J Neurosci Res, 2010, 88(10): 2091-2102.
41
Benarroch EE. Brain-derived neurotrophic factor: regulation, effects, and potential clinical relevance [J]. Neurology, 2015, 84(16): 1693-1704.
42
Blondeau N, Nguemeni C, Debruyne DN, et al. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke [J]. Neuropsychopharmacology, 2009, 34(12): 2548-2559.
43
Balogun KA, Cheema SK. The expression of neurotrophins is differentially regulated by ω-3 polyunsaturated fatty acids at weaning and postweaning in C57BL/6 mice cerebral cortex [J]. Neurochem Int, 2014, 66: 33-42.
44
Gao H, Yan P, Zhang S, et al. Long-term dietary alpha-linolenic acid supplement alleviates cognitive impairment correlate with activating hippocampal CREB signaling in natural aging rats [J]. Mol Neurobiol, 2016, 53(7): 4772-4786.
45
Fang M, Li X, Qian H, et al. ω-3 PUFAs prevent MK-801-induced cognitive impairment in schizophrenic rats via the CREB/BDNF/TrkB pathway [J]. J Huazhong Univ Sci Technolog Med Sci, 2017, 37(4): 491-495.
46
Lee J, Huang BX, Kwon H, et al. Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function [J]. Nat Commun, 2016, 7: 13123.
47
Yamashima T. 'PUFA-GPR40-CREB signaling' hypothesis for the adult primate neurogenesis [J]. Prog Lipid Res, 2012, 51(3): 221-231.
48
Javanainen M, Enkavi G, Guixà-Gonzaléz R, et al. Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions [J]. PLoS Comput Biol, 2019, 15(5): e1007033.
49
Owada Y, Yoshimoto T, Kondo H. Spatio-temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains [J]. J Chem Neuroanat, 1996, 12(2): 113-122.
50
Ebrahimi M, Yamamoto Y, Sharifi K, et al. Astrocyte-expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons [J]. Glia, 2016, 64(1): 48-62.
51
Heifets BD, Castillo PE. Endocannabinoid signaling and long-term synaptic plasticity [J]. Annu Rev Physiol, 2009, 71: 283-306.
52
Pablo, Thomas, Andrés, et al. Endocannabinoid signaling and synaptic function [J]. Neuron, 2012, 76(1): 70-81.
53
Thomazeau A, Bosch-Bouju C, Manzoni O, et al. Nutritional n-3 PUFA deficiency abolishes endocannabinoid gating of hippocampal long-term potentiation [J]. Cereb Cortex, 2017, 27(4): 2571-2579.
54
Manduca A, Bara A, Larrieu T, et al. Amplification of mGlu5-endocannabinoid signaling rescues behavioral and synaptic deficits in a mouse model of adolescent and adult dietary polyunsaturated fatty acid imbalance [J]. J Neurosci, 2017, 37(29): 6851-6868.
55
Haj-Dahmane S, Shen R, Elmes MW, et al. Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses [J]. Proc Natl Acad Sci USA, 2018, 115(13): 3482-3487.
56
Tyrtyshnaia A, Konovalova S, Bondar A, et al. Anti-inflammatory activity of n-docosahexaenoylethanolamine and n-eicosapentaenoylethanolamine in a mouse model of lipopolysaccharide-induced neuroinflammation [J]. Int J Mol Sci, 2021, 22(19): 10728.
57
Tyrtyshnaia A, Bondar A, Konovalova S, et al. N-docosahexanoylethanolamine reduces microglial activation and improves hippocampal plasticity in a murine model of neuroinflammation [J]. Int J Mol Sci, 2020, 21(24): 9703.
58
Kwon H, Kevala K, Xin H, et al. Ligand-induced GPR110 activation facilitates axon growth after injury [J]. Int J Mol Sci, 2021, 22(7): 3386.
59
Chen H, Kevala K, Aflaki E, et al. GPR110 ligands reduce chronic optic tract gliosis and visual deficit following repetitive mild traumatic brain injury in mice [J]. J Neuroinflammation, 2021, 18(1): 157.
60
Halade GV, Black LM, Verma MK. Paradigm shift - metabolic transformation of docosahexaenoic and eicosapentaenoic acids to bioactives exemplify the promise of fatty acid drug discovery [J]. Biotechnol Adv, 2018, 36(4): 935-953.
61
Rey C, Nadjar A, Buaud B, et al. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro [J]. Brain Behav Immun, 2016, 55: 249-259.
62
Joffre C, Rey C, Layé S. N-3 polyunsaturated fatty acids and the resolution of neuroinflammation [J]. Front Pharmacol, 2019, 10: 1022.
63
李忠秋, 焦建伟. 小胶质细胞的发育及在中枢神经系统的功能研究进展 [J]. 中国药理学与毒理学杂志, 2017, 31(11): 1050-1056.
64
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
65
Bisicchia E, Sasso V, Catanzaro G, et al. Resolvin D1 halts remote neuroinflammation and improves functional recovery after focal brain damage via ALX/FPR2 receptor-regulated microRNAs [J]. Mol Neurobiol, 2018, 55(8): 6894-6905.
66
Ren Y, Zhang B, Zhao X, et al. Resolvin D1 ameliorates cognitive impairment following traumatic brain injury via protecting astrocytic mitochondria [J]. J Neurochem, 2020, 154(5): 530-546.
67
Rey C, Nadjar A, Buaud B, et al. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro [J]. Brain Behav Immun, 2016, 55: 249-259.
68
Terrando N, Gómez Galán M, Yang T, et al. Aspirin-triggered resolvin D1 prevents surgery-induced cognitive decline [J]. FASEB J, 2013, 27(9): 3564-3571.
69
Zhou Y, Wang J, Li X, et al. Neuroprotectin D1 protects against postoperative delirium-like behavior in aged mice [J]. Front Aging Neurosci, 2020, 12: 582674.
70
Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression [J]. J Biol Chem, 2003, 278(44): 43807-43817.
71
Yao C, Zhang J, Chen F, et al. Neuroprotectin D1 attenuates brain damage induced by transient middle cerebral artery occlusion in rats through TRPC6/CREB pathways [J]. Mol Med Rep, 2013, 8(2): 543-550.
72
Bazan NG. Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection [J]. Prostaglandins Leukot Essent Fatty Acids, 2009, 81(2-3): 205-211.
73
Calandria JM, Mukherjee PK, De Rivero Vaccari J C, et al. Ataxin-1 poly(Q)-induced proteotoxic stress and apoptosis are attenuated in neural cells by docosahexaenoic acid-derived neuroprotectin D1 [J]. J Biol Chem, 2012, 287(28): 23726-23739.
74
Lukiw WJ, Bazan NG. Inflammatory, apoptotic, and survival gene signaling in Alzheimer's disease. A review on the bioactivity of neuroprotectin D1 and apoptosis. Mol Neurobiol. 2010 Aug;42(1):10-6.
75
Asatryan A, Bazan NG. Molecular mechanisms of signaling via the docosanoid neuroprotectin D1 for cellular homeostasis and neuroprotection. J Biol Chem. 2017 Jul 28; 292(30): 12390-12397.
76
Calandria J M, Asatryan A, Balaszczuk V, et al. NPD1-mediated stereoselective regulation of BIRC3 expression through cREL is decisive for neural cell survival [J]. Cell Death Differ, 2015, 22(8): 1363-1377.
77
Belayev L, Mukherjee PK, Balaszczuk V, et al. Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke [J]. Cell Death Differ, 2017, 24(6): 1091-1099.
78
Zirpoli H, Sosunov SA, Niatsetskaya ZV, et al. NPD1 rapidly targets mitochondria-mediated apoptosis after acute injection protecting brain against ischemic injury [J]. Exp Neurol, 2021, 335: 113495.
79
Zhao Y, Calon F, Julien C, et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer's disease models [J]. PLoS One, 2011, 6(1): e15816.
80
Xian W, Wu Y, Xiong W, et al. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response [J]. Biochem Biophys Res Commun, 2016, 472(1): 175-181.
81
Xian W, Li T, Li L, et al. Maresin 1 attenuates the inflammatory response and mitochondrial damage in mice with cerebral ischemia/reperfusion in a SIRT1-dependent manner [J]. Brain Res, 2019, 1711: 83-90.
82
Zhu M, Wang X, Hjorth E, et al. Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis [J]. Mol Neurobiol, 2016, 53(4): 2733-2749.
83
Wang Y, Leppert A, Tan S, et al. Maresin 1 attenuates pro-inflammatory activation induced by β-amyloid and stimulates its uptake [J]. J Cell Mol Med, 2021, 25(1): 434-447.
84
Afshordel S, Hagl S, Werner D, et al. Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging--impact of Bcl-2 and NPD-1 like metabolites [J]. Prostaglandins Leukot Essent Fatty Acids, 2015, 92: 23-31.
85
Eckert G P, Franke C, Nöldner M, et al. Plant derived omega-3-fatty acids protect mitochondrial function in the brain [J]. Pharmacol Res, 2010, 61(3): 234-241.
86
Mayurasakorn K, Niatsetskaya ZV, Sosunov SA, et al. DHA but not EPA emulsions preserve neurological and mitochondrial function after brain hypoxia-ischemia in neonatal mice [J]. PLoS One, 2016, 11(8): e0160870.
87
Zhang T, Wu P, Zhang JH, et al. Docosahexaenoic acid alleviates oxidative stress-based apoptosis via improving mitochondrial dynamics in early brain injury after subarachnoid hemorrhage [J]. Cell Mol Neurobiol, 2018, 38(7): 1413-1423.
88
Mett J. The impact of medium chain and polyunsaturated ω-3-fatty acids on amyloid-β deposition, oxidative stress and metabolic dysfunction associated with Alzheimer's disease [J]. Antioxidants (Basel), 2021, 10(12): 1991.
89
Pifferi F, Jouin M, Alessandri JM, et al. N-3 fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier. Prostaglandins Leukot Essent Fatty Acids [J]. 2007, 77(5-6): 279-286.
90
Pifferi F, Dorieux O, Castellano C, et al. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur [J]. J Lipid Res, 2015, 56(8): 1511-1518.
91
Picklo MJ, Johnson L, Idso J. PPAR mRNA levels are modified by dietary n-3 fatty acid restriction and energy restriction in the brain and liver of growing rats [J]. J Nutr, 2017, 147(2): 161-169.
92
Pifferi F, Cunnane SC, Guesnet P. Evidence of the role of omega-3 polyunsaturated fatty acids in brain glucose metabolism [J]. Nutrients, 2020, 12(5): 1382.
[1] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[2] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[3] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[4] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[5] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[6] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[7] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 张海涛, 康婵娟, 翟静洁. 胰管支架置入治疗急性胆源性胰腺炎效果观察[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 654-657.
[10] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[11] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
[12] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[13] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要