切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 491 -495. doi: 10.3877/cma.j.issn.1674-0785.2023.04.022

综述

智能化靶控输注药代模型的研究进展
赖志豪(), 路延, 欧阳锌澄, 宋可欣   
  1. 510150 广州,广州医科大学附属第三医院麻醉科
    510010 广州,南部战区总医院麻醉科
  • 收稿日期:2022-03-19 出版日期:2023-04-15
  • 通信作者: 赖志豪

Progress in research of pharmacokinetic models for intelligent target controlled infusion

Zhihao Lai(), Yan Lu, Xincheng OuYang, Kexin Song   

  1. Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
    Department of Anesthesiology, General Hospital of Southern Theatre Command, Guangzhou 510010, China
  • Received:2022-03-19 Published:2023-04-15
  • Corresponding author: Zhihao Lai
引用本文:

赖志豪, 路延, 欧阳锌澄, 宋可欣. 智能化靶控输注药代模型的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 491-495.

Zhihao Lai, Yan Lu, Xincheng OuYang, Kexin Song. Progress in research of pharmacokinetic models for intelligent target controlled infusion[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(04): 491-495.

靶控输注(TCI)是一种静脉输注药物以达到特定体室或组织预设浓度(靶浓度)的给药技术。医学大数据时代的到来,TCI技术日趋成熟,一方面,为实现现代麻醉的智能化,自动给药系统的开发研究逐渐得到重视;另一方面,TCI药代模型的优化则强调了麻醉的个体化。本文就现代医学背景下TCI多通道闭环系统与药代模型优化的研究进展进行综述,为探究TCI的发展趋势提供参考。

Target controlled infusion (TCI) is a technique of infusing intravenous drugs to achieve a user-defined predicted (target) drug concentration in a specific body compartment or tissue of interest. TCI is becoming widely used with the advent of big data in medicine. In order to realize the intellectualization of modern anesthesia, more attention has been paid to the development and research of automatic drug delivery systems, while the optimization of TCI models emphasizes the individualization of anesthesia. This review intends to link TCI to modern medicine and thus to illustrate the multichannel closed-loop system and the optimization of pharmacokinetic models, which will characterize the future development of TCI.

图1 PTCI模型 注:PTCI为药物效应动力学模型控制的靶控输注
图2 复杂生理模型示意图 注:器官“Portal”为所有血流被门静脉收集的器官。结缔组织分为两个器官,“Tendon”的血流灌输相对低;“Other”的血流灌注相对较高
1
Struys MM, De Smet T, Glen JI, et al. The history of target-controlled infusion [J]. Anesth Analg, 2016, 122(1): 56-69.
2
Zhang L, Wang H, Li Q, et al. Big data and medical research in China [J]. BMJ, 2018, 360: j5910.
3
Farag E, Westlake B, Dutton RP, et al. The ASA committee for neuroanesthesia and anesthesia quality institute: report for demographic patterns for neurosurgical anesthesia practice in the United States [J]. J Neurosurg Anesthesiol, 2018, 30(2): 189-191.
4
Leopold JA. Precision medicine based on personal phenotyping [J]. Trends Cardiovasc Med, 2023, 27: S1050-1738(23)00016-6.
5
Feehley T, O'Donnell CW, Mendlein J, et al. Drugging the epigenome in the age of precision medicine [J]. Clin Epigenetics, 2023, 15(1): 6.
6
Engbers FHM, Dahan A. Anomalies in target-controlled infusion: an analysis after 20 years of clinical use [J]. Anaesthesia, 2018, 73(5): 619-630.
7
Liu N, Le Guen M, Benabbes-Lambert F, et al. Feasibility of closed-loop titration of propofol and remifentanil guided by the spectral M-Entropy Monitor [J]. Anesthesiology, 2012, 116(2): 286-295.
8
Martín-Mateos I, Méndez Pérez JA, Reboso Morales JA, et al. Adaptive pharmacokinetic and pharmacodynamic modelling to predict propofol effect using BIS-guided anesthesia [J]. Comput Biol Med, 2016, 75: 173-180.
9
Fang M, Tao Y, Wang Y. An enriched simulation environment for evaluation of closed-loop anesthesia [J]. J Clin Monit Comput, 2014, 28(1): 13-26.
10
Hemmerling TM, Arbeid E, Wehbe M, et al. Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: a randomized controlled trial [J]. Br J Anaesth, 2013, 110(6): 1031-1039.
11
杨宁, 杨明, 彭文平, 等. BIS指导下异丙酚闭环与开环靶控输注腹部手术麻醉效果的比较 [J]. 中南大学学报·医学版, 2020, 45(12): 1419-1424.
12
Kuizenga MH1, Vereecke HE, Struys MM. Model-based drug administration: current status of target-controlled infusion and closed-loop control [J]. Curr Opin Anaesthesiol, 2016, 29(4): 475-481.
13
Hemmerling TM, Charabati S, Salhab E, et al. The Analgoscore: a novel score to monitor intraoperative nociception and its use for closed-loop application of remifentanil [J]. J Comput, 2009, 4: 311-318.
14
Bibian S, Dumont GA, Black I. Closed-loop target-controlled infusion systems: stability and performance aspects [J]. Mil Med, 2015, 180(3 Suppl): 96-103.
15
吴奇伟, 岳云, 张忱. 腹部手术中闭环与开环靶控输注罗库溴铵的药效比较 [J/OL]. 中华临床医师杂志(电子版), 2012, 6(6): 1605-1606.
16
Dussaussoy C, Peres M, Jaoul V, et al. Automated titration of propofol and remifentanil decreases the anesthesiologist's workload during vascular or thoracic surgery: a randomized prospective study [J]. J Clin Monit Comput, 2014, 28(1): 35-40.
17
Guo Y, Wang D, Yang X, et al. Effects of different sufentanil target concentrations on the MACBAR of sevoflurane inpatients with carbon dioxide pneumoperitoneum stimulus [J]. BMC Anesthesiol, 2020, 20(1): 239.
18
赵艳, 王玉洁, 邱维吉, 等. 静吸复合全麻时靶控输注低浓度舒芬太尼的准确性评价 [J]. 中华麻醉学杂志, 2020, 40(8): 4.
19
韩灵, 庞磊, 连鑫等. 不同效应室靶浓度舒芬太尼对丙泊酚意识消失EC50的影响 [J/OL]. 中华临床医师杂志(电子版), 2011, 5(06): 1601-1605.
20
Chen L, Wang M, Xiang H, et al. Prediction of effect-site concentration of sufentanil by dose-response target controlled infusion of sufentanil and propofol for analgesic and sedation maintenance in burn dressing changes [J]. Burns, 2014, 40(3): 455-459.
21
李柳旬, 徐波, 吴宗泽, 等. NI指导下丙泊酚-瑞芬太尼程控性闭环靶控输注麻醉用于腹腔镜胆囊切除术的效果 [J]. 中华麻醉学杂志, 2016, 36(12): 1423-1427.
22
Mahr N, Bouhake Y, Chopard G, et al. Postoperative neurocognitive disorders after closed-loop versus manual target controlled-infusion of propofol and remifentanil in patients undergoing elective major noncardiac surgery: the randomized controlled postoperative cognitive dysfunction-electroencephalographic-guided anesthetic administration trial [J]. Anesth Analg, 2021, 133(4): 837-847.
23
Hüppe T, Maurer F, Sessler DI, et al. Retrospective comparison of Eleveld, Marsh, and Schnider propofol pharmacokinetic models in 50 patients [J]. Br J Anaesth, 2020, 124(2): e22-e24.
24
Schnider TW, Minto CF, Gambus PL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers[J]. Anesthesiology, 1998, 88(5): 1170-1182.
25
Schüttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study [J]. Anesthesiology, 2000, 92(3): 727-738.
26
陈广民, 郭雷, 李恩有. 丙泊酚靶控输注准确性的研究进展 [J]. 中国现代应用药学, 2020, 37(19): 5.
27
Anderson BJ, Bagshaw O. Practicalities of total intravenous anesthesia and target-controlled infusion in children [J]. Anesthesiology, 2019, 131(1): 164-185.
28
Eleveld DJ, Colin P, Absalom AR, et al. Target-controlled-infusion models for remifentanil dosing consistent with approved recommendations [J]. Br J Anaesth, 2020, 125(4): 483-491.
29
Maitre PO, Ausems ME, Vozeh S, et al. Evaluating the accuracy of using population pharmacokinetic data to predict plasma concentrations of alfentanil [J]. Anesthesiology, 1988, 68: 59-67.
30
Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation [J]. J Pharmacol Exp Ther, 1987, 240: 159-166.
31
Wu W, Zhou Y, Zhu Y, et al. Sufentanil target controlled infusion (TCI) versus remifentanil TCI for monitored anaesthesia care for patients with severe tracheal stenosis undergoing fiberoptic bronchoscopy: protocol for a prospective, randomised, controlled study [J]. BMJ Open, 2022, 12(8): e058662.
32
Ingrande J, Lemmens HJ. Target-Controlled Infusion: not a one-sized-fits-all answer to drug administration [J]. Anesth Analg, 2018, 127(4): 813-814.
33
Glen JB, White M. A comparison of the predictive performance of three pharmacokinetic models for propofol using measured values obtained during target-controlled infusion [J]. Anaesthesia, 2014, 69(6): 550-557.
34
de la Fuente NF, Puga VA, Cortínez LI, et al. The effective effect-site propofol concentration for induction in morbidly obese patients using total body weight with a new pharmacokinetic model [J]. Anesth Analg, 2013, 117(1): 283-284.
35
Chidambaran V, Venkatasubramanian R, Sadhasivam S, et al. Population pharmacokinetic-pharmacodynamic modeling and dosing simulation of propofol maintenance anesthesia in severely obese adolescents [J]. Paediatr Anaesth, 2015, 25(9): 911-923.
36
Cortínez LI, De la Fuente N, Eleveld DJ, et al. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis [J]. Anesth Analg, 2014, 119(2): 302-310.
37
Eleveld DJ. Target-controlled-infusion for special populations: How different is different enough? [J]. Acta Anaesthesiol Scand, 2019, 63(4): 422-423.
38
Short TG, Hannam JA, Laurent S, et al. Refining target-controlled infusion: an assessment of pharmacodynamic target-controlled infusion of propofol and remifentanil using a response surface model of their combined effects on bispectral index [J]. Anesth Analg, 2016, 122(1): 90-97.
39
陈杭. 麻醉靶控输注的控制策略及算法研究 [D]. 杭州: 浙江大学, 2007.
40
王乐, 夏彬彬, 陈世财. 生理药代动力学模型在临床合理用药中的应用 [J]. 中国临床药理学杂志, 2023, 39(01): 127-130.
41
Deepika D, Kumar V. The role of “physiologically based pharmacokinetic model (PBPK)” new approach methodology (NAM) in pharmaceuticals and environmental chemical risk assessment [J]. Int J Environ Res Public Health, 2023, 20(4): 3473.
42
Fairman K, Choi MK, Gonnabathula P, et al. An overview of physiologically-based pharmacokinetic models for forensic science [J]. Toxics, 2023, 11(2): 126.
43
Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine [J]. J Pharmacokinet Pharmacodyn, 2016, 43(5): 481-504.
44
姜晓峰. 医疗大数据在临床医学中的应用现状 [J/OL]. 中华临床医师杂志(电子版), 2018, 12(8): 427-431.
[1] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[2] 陈永庄, 莫小乔, 谢天. 心血管事件患者术后30 d死亡风险决策树模型的构建与评估——基于少数类样本合成过采样技术算法[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 390-398.
[3] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[4] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[5] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[8] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[9] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[10] 王帆, 马秋月, 刘小莉. 基于分位数回归模型的切口疝手术患者住院费用影响因素分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 522-529.
[11] 林文斌, 郑泽源, 郑文能, 郁毅刚. 外伤性脾破裂腹腔镜脾切除术患者中转开腹风险预测模型构建[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 619-623.
[12] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[13] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[14] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[15] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
阅读次数
全文


摘要