切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (08) : 900 -905. doi: 10.3877/cma.j.issn.1674-0785.2023.08.010

综述

尘肺病的相关研究进展
李田, 徐洪(), 刘和亮   
  1. 063000 河北唐山,华北理工大学公共卫生学院
  • 收稿日期:2022-02-25 出版日期:2023-08-15
  • 通信作者: 徐洪

Progress in research of pneumoconiosis

Tian Li, Hong Xu(), Heliang Liu   

  1. School of Public Health, North China University of Science and Technology, Tangshan 063000, China
  • Received:2022-02-25 Published:2023-08-15
  • Corresponding author: Hong Xu
引用本文:

李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.

Tian Li, Hong Xu, Heliang Liu. Progress in research of pneumoconiosis[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(08): 900-905.

尘肺病涉及我国目前最严重的职业卫生安全问题,给社会和患者家庭带来巨大负担。尘肺病病因明确,可防可控。但起病隐匿、病程长,早期诊断和进展监测措施有限。即使脱离粉尘环境,尘肺患者肺部疾患仍持续进展、恶化,且缺乏有效的治疗和判断纤维化进展的有效手段。这些问题是制约尘肺病诊治的关键环节。因此,对近年来有关于尘肺病的早期识别、诊断和治疗的相关文献进行综述,从现有的基础研究、队列研究和临床研究入手,探讨尘肺病的诊治现状和今后发展方向。

Pneumoconiosis is the most serious occupational health and safety problem in China, which has brought a great burden to the society and patients' families. Pneumoconiosis has a clear etiology and is preventable and controllable, but it has a hidden onset and long duration, which makes a clear early diagnosis and monitoring difficult. Furthermore, even if the patients are out of the dust environment, lung lesions still will continue to progress and deteriorate, and there is currently a lack of effective therapeutic measures and methods of judging fibrosis progression. These problems together restrict the diagnosis and treatment of pneumoconiosis. In this paper, we review the literature on early identification, diagnosis, and treatment of pneumoconiosis in recent years, and discuss the difficulties in diagnosis and treatment of pneumoconiosis and the future development direction based on the existing basic and clinical studies.

1
中华人民共和国国家卫生健康委员会. 2020年我国卫生健康事业发展统计公报 [EB/OB]. 2021.07.13.
2
中华预防医学会劳动卫生与职业病分会职业性肺部疾病学组. 尘肺病治疗中国专家共识(2018年版) [J]. 环境与职业医学, 2018, 35(8): 677-689.
3
Austin EK, James C, Tessier J. Early detection methods for silicosis in Australia and internationally: a review of the literature [J]. Int J Environ Res Public Health, 2021, 18(15): 8123.
4
Adamcakova J, Mokra D. New insights into pathomechanisms and treatment possibilities for lung silicosis [J]. Int J Mol Sci, 2021, 22(8): 4162.
5
Qi XM, Luo Y, Song MY, et al. Pneumoconiosis: current status and future prospects [J]. Chin Med J (Engl), 2021, 134(8): 898-907.
6
Murray DK, Harrison JC, Wallace WE. A 13C CP/MAS and 31P NMR study of the interactions of dipalmitoylphosphatidylcholine with respirable silica and kaolin [J]. J Colloid Interface Sci, 2005, 288(1): 166-170.
7
Chunbo Y., Daqing Z., Aizhuo L., et al. A NMR study of the interaction of silica with dipalmitoylphosphatidylcholine liposomes [J]. Colloid Interface Sci, 172, 536-538 (1995).
8
Pavan C, Santalucia R, Leinardi R, et al. Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles [J]. Proc Natl Acad Sci U S A, 2020, 117(45): 27836-27846.
9
Tsugita M, Morimoto N, Tashiro M, et al. SR-B1 is a silica receptor that mediates canonical inflammasome activation [J]. Cell Rep, 2017, 18(5): 1298-1311.
101
Pine SR, Mechanic LE, Enewold L, et al. Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer [J]. J Natl Cancer Inst, 2011, 103(14): 1112-1122.
11
Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization [J]. Nat Immunol, 2008, 9(8): 847-856.
12
Peeters PM, Perkins TN, Wouters EF, et al. Silica induces NLRP3 inflammasome activation in human lung epithelial cells [J]. Part Fibre Toxicol, 2013, 10: 3.
13
Perkins TN, Shukla A, Peeters PM, et al. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells [J]. Part Fibre Toxicol, 2012, 9(1): 6.
14
Sayan M, Mossman BT. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases [J]. Part Fibre Toxicol, 2016, 13(1): 51.
15
dos Santos G, Kutuzov MA, Ridge KM. The inflammasome in lung diseases [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 303: L627-L633.
16
Liu RM. Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis [J]. Antioxid Redox Signal, 2008, 10: 303-319.
17
Jin F, Geng F, Xu D, et al. Ac-SDKP attenuates activation of lung macrophages and bone osteoclasts in rats exposed to silica by inhibition of TLR4 and RANKL signaling pathways [J]. J Inflamm Res, 2021, 14: 1647-1660.
18
Bolourani S, Brenner M, Wang P. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis [J]. J Mol Med (Berl), 2021, 99(10): 1373-1384.
19
Carreño Hernández MC, Garrido Paniagua S, Colomés Iess M, et al. Accelerated silicosis with bone marrow, hepatic and splenic involvement in a patient with lung transplantation [J]. BMJ Case Rep, 2019, 12(12): e230781.
20
Trempus C, Barkauskas C, Garantziotis S, et al. Primary cilia are a critical component of the fibroblast-AEC2 self-renewal axis and contribute to protection from pulmonary fibrosis [J]. American Journal Of Respiratory And Critical Care Medicine, 2018, 197.
21
Li S, Wei Z, Li G, et al. Silica perturbs primary cilia and causes myofibroblast differentiation during silicosis by reduction of the KIF3A-repressor GLI3 complex [J]. Theranostics, 2020, 10(4): 1719-1732.
22
Pang J, Qi X, Luo Y, et al. Multi-omics study of silicosis reveals the potential therapeutic targets PGD2 and TXA2 [J]. Theranostics. 2021, 11(5): 2381-2394.
23
Gao X, Xu D, Li S, et al. Pulmonary silicosis alters microRNA expression in rat lung and miR-411-3p exerts anti-fibrotic effects by inhibiting MRTF-A/SRF signaling [J]. Mol Ther Nucleic Acids, 2020, 20: 851-865.
24
陈卫红. 我国尘肺防治的研究进展与展望 [J]. 中国个体防护装备, 2011(6): 40-41, 46.
25
Calvert GM, Rice FL, Boiano JM, et al. Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states of the United States [J]. Occup Environ Med, 2003, 60(2): 122-129.
26
Brown TP, Rushton L. Mortality in the UK industrial silica sand industry: 1. Assessment of exposure to respirable crystalline silica [J]. Occup Environ Med, 2005, 62(7): 442-445.
27
Dominici F, Peng RD, Bell ML, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases [J]. JAMA, 2006, 295(10): 1127-1134.
28
Chen W, Zhuang Z, Attfield MD, et al. Exposure to silica and silicosis among tin miners in China: exposure-response analyses and risk assessment [J]. Occup Environ Med, 2001, 58(1): 31-37.
29
Chen W, Liu Y, Wang H, et al. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study [J]. PLoS Med, 2012, 9(4): e1001206.
30
Liu Y, Steenland K, Rong Y, et al. Exposure-response analysis and risk assessment for lung cancer in relationship to silica exposure: a 44-year cohort study of 34,018 workers [J]. Am J Epidemiol, 2013, 178(9): 1424-1433.
31
罗进斌, 陈爽, 何晓庆. 尘肺发病接尘工龄调查 [J]. 浙江预防医学, 2012, 24(3): 47-48, 55.
32
余晨, 何嘉玉, 朱秋鸿. 《职业性尘肺病的诊断》(GBZ70-2015)标准实施情况调查 [J].中国卫生标准管理, 2023, 14(7): 1-6.
33
蔡志春. 对GBZ 70-2015《职业性尘肺病的诊断》的理解 [J]. 中华劳动卫生职业病杂志, 2016, 34(11): 866-867.
34
宋鹏, 陈旭生. 高千伏摄影在职业病-尘肺病诊断中的特点总结 [J]. 医药前沿, 2016, 6(13): 95-96.
35
胡茂能, 周俊生, 荣光生, 等. 计算机X线成像在尘肺病诊断中的应用研究 [J]. 临床放射学杂志, 2009, 28(10): 1451-1453.
36
曲良勇, 苑翠红, 钮建武, 等. 数字X射线摄影在尘肺筛查中的应用研究 [J]. 中国辐射卫生, 2018, 27(5): 507-510.
37
余梁, 胡茂能, 刘亚, 等. 数字X线成像联合双能量减影技术诊断尘肺病的临床应用探讨 [J]. 蚌埠医学院学报, 2020, 45(3): 378-381.
38
韩鹏举, 崔兵. DR联合DES技术对尘肺患者检出率的影响 [J]. 现代诊断与治疗, 2020, 31(14): 2288-2289.
39
周建中, 胡碧华, 曹子文, 等. 低剂量螺旋CT在尘肺患者诊断中的应用及临床意义研究 [J]. 当代医学, 2020, 26(4): 63-65.
40
王英杰, 贺文. 应用能谱CT定量尘肺患者肺内二氧化硅沉积量的研究 [J/OL]. 中华临床医师杂志(电子版), 2014, 8(12): 2215-2218.
41
张效杰, 唐上坤, 史爱法, 等. 煤工尘肺肿块及结节病灶的MRI表现特征分析 [J]. 中国中西医结合影像学杂志, 2019, 17(6): 617-619.
42
Madsen PH, Holdgaard PC, Christensen JB, et al. Clinical utility of F-18 FDG PET-CT in the initial evaluation of lung cancer [J]. Eur J Nucl Med Mol Imaging, 2016, 43(11): 2084-2097.
43
Choi EK, Park HL, Yoo IR, et al. The clinical value of F-18 FDG PET/CT in differentiating malignant from benign lesions in pneumoconiosis patients [J]. Eur Radiol, 2020, 30(1): 442-451.
44
卞明敏, 胡茂能. 尘肺病影像学研究进展 [J]. 职业与健康, 2021, 37(19): 2714-2717, 2722.
45
张敏, 陈均强. 人工智能技术在尘肺病诊断中的应用研究进展 [J]. 环境与职业医学, 2020, 37(2): 192-196.
46
徐明. 人工智能应用于尘肺病诊断和预防的路径分析 [J]. 中国医疗保险, 2020, (5): 68-70.
47
肖淑玉, 高静, 孙志谦, 等. 多层感知器神经网络模型对职业性煤工尘肺发病预测研究[J]. 中国职业医学, 2021, 48(1): 19-25.
48
Kim GHJ, Weigt SS, Belperio JA, et al. Prediction of idiopathic pulmonary fibrosis progression using early quantitative changes on CT imaging for a short term of clinical 18-24-month follow-ups [J]. Eur Radiol, 2020, 30(2): 726-734.
49
李德鸿. 解决农民工尘肺问题必须破除体制束缚 [J]. 劳动保护, 2021(4): 32-33.
50
Khalil M, Cowen M, Chaudhry M, et al. Single versus multiple lung biopsies for suspected interstitial lung disease [J]. Asian Cardiovasc Thorac Ann, 2016, 24(8): 788-791.
51
Han Q, Luo Q, Xie JX, et al. Diagnostic yield and postoperative mortality associated with surgical lung biopsy for evaluation of interstitial lung diseases: a systematic review and meta-analysis [J]. JThorac Cardiovasc Surg, 2015, 149(5): 1394-1401.
52
Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis.An official ATS/ERS/JRS/ALAT clinical practice guideline [J]. Am J Respir Crit Care Med, 2018, 198(5): e44-e68.
53
Griff S, Ammenwerth W, Schönfeld N, et al. Morphometrical analysis of transbronchial cryobiopsies [J]. Diagn Pathol, 2011, 6: 53.
54
Han Q, Luo Q, Chen X, et al. The evaluation of clinical usefulness of transbrochoscopic lung biopsy in undefined interstitial lung diseases:a retrospective study [J]. Clin Respir J, 2017, 11(2): 168-175
55
戴伟荣, 李莉, 占扬清, 等. 经皮穿刺肺活检术在尘肺病诊断与鉴别诊断中的应用: 4例报道 [J]. 环境与职业医学, 2019, 36(3): 282-286.
56
曾婉, 敖知, 李一诗, 等. 经支气管冷冻肺活检在尘肺病诊断中的应用 [J]. 中国实用内科杂志, 2020, 40(2): 133-139.
57
赵金垣, 王世俊. 尘肺应为可治之症 [J]. 环境与职业医学, 2016, 33(1): 90-95.
58
陈刚, 袁扬, 马国宣, 等. 大容量全肺灌洗治疗尘肺病及其他肺疾患15 000例报告 [J]. 中国疗养医学, 2018, 27(11): 1124-1129.
59
孙治平, 李宝平, 高丽妮, 等. 尘肺病患者双肺大容量肺灌洗治疗前后生存质量对比分析 [J]. 职业与健康, 2021, 37(13): 1834-1836, 1839.
60
Blackley DJ, Halldin CN, Hayanga JWA, et al. Transplantation for work-related lung disease in the USA [J]. Occup Environ Med, 2020, 77(11): 790-794.
61
毛文君, 聂晓伟, 夏维, 等. 肺移植治疗Ⅲ期矽肺术后生存的影响因素 [J]. 中华劳动卫生职业病杂志, 2016, 34(9): 659-664.
62
Song MY, Wang JX, Sun YL, et al. Tetrandrine alleviates silicosis by inhibiting canonical and non-canonical NLRP3 inflammasome activation in lung macrophages [J]. Acta Pharmacol Sin, 2022, 43(5): 1274-1284.
63
Cao ZJ, Liu Y, Zhang Z, et al. Pirfenidone ameliorates silica-induced lung inflammation and fibrosis in mice by inhibiting the secretion of interleukin-17A [J]. Acta Pharmacol Sin, 2022, 43(4): 908-918.
64
Sun J, Li Q, Lian X, et al. MicroRNA-29b Mediates Lung Mesenchymal-Epithelial Transition and Prevents Lung Fibrosis in the Silicosis Model [J]. Mol Ther Nucleic Acids, 2019, 14: 20-31.
65
Chen Y, Xu D, Yao J, et al. Inhibition of miR-155-5p exerts anti-fibrotic effects in silicotic mice by regulating meprin α [J]. Mol Ther Nucleic Acids, 2020, 19: 350-360.
66
Cai W, Xu H, Zhang B, et al. Differential expression of lncRNAs during silicosis and the role of LOC103691771 in myofibroblast differentiation induced by TGF-β1 [J]. Biomed Pharmacother, 2020, 125: 109980.
67
Xu Q, Cheng D, Liu Y, et al. LncRNA-ATB regulates epithelial-mesenchymal transition progression in pulmonary fibrosis via sponging miR-29b-2-5p and miR-34c-3p [J]. J Cell Mol Med, 2021, 25(15): 7294-7306.
68
Spitalieri P, Quitadamo MC, Orlandi A, et al. Rescue of murine silica-induced lung injury and fibrosis by human embryonic stem cells [J]. Eur Respir J, 2012, 39(2): 446-457.
69
Li X, An G, Wang Y, et al. Targeted migration of bone marrow mesenchymal stem cells inhibits silica-induced pulmonary fibrosis in rats [J]. Stem Cell Res Ther, 2018, 9: 335.
70
Felix RG, Bovolato ALC, Cotrim OS, et al. Adipose-derived stem cells and adipose-derived stem cell-conditioned medium modulate in situ imbalance between collagen Iand collagen V-mediated IL-17 immune response recovering bleomycin pulmonary fibrosis [J]. Histol Histopathol, 2020, 35: 289-301.
71
Mansouri N, Willis GR, Fernandez-Gonzalez A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes [J]. JCI Insight, 2019, 4(21): e128060.
72
Yu X, Odenthal M, Fries JW. Exosomes as miRNA carriers: formation-function-future [J]. Int J Mol Sci, 2016, 17(12): 2028.
73
王增杰, 于洪领. 黄芪注射液对尘肺患者血清丙二醛和超氧化物歧化酶的影响 [J]. 辽宁中医药大学学报, 2010, 12(12): 105-106.
74
田立岩, 杨春霞, 段军. 中药桔梗治疗矽肺临床疗效观察 [J]. 中国职业医学, 2007(4): 307.
75
廖筱敏, 李娟, 蒋荣兴, 等. 氧化苦参碱对矽肺治疗的临床观察 [J]. 职业与健康, 2005, (6): 926-927.
76
宋海燕. 参脉注射液对矽肺患者血液中超氧化物歧化酶的影响 [J]. 中华预防医学杂志, 2004, 38(5): 330.
77
杨晓丽, 郑林, 郭建霞, 等. 疏血通对煤工尘肺结核合并肺心病的临床治疗 [J]. 中华医药杂志, 2007, 7(2): 321.
78
李端华, 金赟, 贾辰生. 舒血宁对矽肺患者血小板聚集度和肺功能影响的观察 [J]. 中国职业医学, 2004, (6): 45.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
[7] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[8] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[9] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[10] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[11] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[12] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[13] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[14] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要