切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (10) : 1102 -1108. doi: 10.3877/cma.j.issn.1674-0785.2023.10.013

综述

外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用
张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎()   
  1. 100144 北京,北京大学首钢医院检验科
  • 收稿日期:2023-02-16 出版日期:2023-10-15
  • 通信作者: 胡守奎
  • 基金资助:
    首颐医疗科技发展基金(SGYYQ202102)

Roles of exosomal circRNA in tumour immunity and cancer immunotherapy

Ke Zhang, Linlin Yan, Pengfei Wang, Xiulin Zhang, Fan Zhao, Shoukui Hu()   

  1. Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
  • Received:2023-02-16 Published:2023-10-15
  • Corresponding author: Shoukui Hu
引用本文:

张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.

Ke Zhang, Linlin Yan, Pengfei Wang, Xiulin Zhang, Fan Zhao, Shoukui Hu. Roles of exosomal circRNA in tumour immunity and cancer immunotherapy[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(10): 1102-1108.

在癌症的发生发展中,肿瘤免疫起着至关重要的作用,免疫治疗已成为癌症治疗的里程碑。外泌体环状RNA具有成为无创性生物标志物的潜力,并且多项研究表明其参与肿瘤免疫和癌症免疫治疗耐药性。在这篇综述中,我们总结了外泌体环状RNA在调节肿瘤免疫、预测免疫治疗疗效方面的作用。外泌体环状RNA在癌症临床治疗中具有巨大前景。

Tumor immunity plays a significant role in the occurrence and development of cancer. Immunotherapy has become a milestone in cancer treatment. Exosomal circRNA have the potential to be noninvasive biomarkers. Several studies showed that exosomal circRNA involved in tumor immunity and cancer immunotherapy resistance. In this review, we summarized the role of exosomal circRNA in regulating tumor immunity and predicting immunotherapy efficacy. Exosomal circRNA has great prospects in the clinical treatment of cancer.

表1 外泌体环状RNA在肿瘤免疫中的作用
癌症种类 分泌体环状RNA 表达 来源 受体细胞 通路 免疫功能 参考文献
肺癌 circZNF451 (hsa-circ-0002638) Cancer cell Macrophages FXR1/ ELF4/IRF4 Macrophages polarization、Anti-PD1 therapy resistance [18]
circRNA-002178 Cancer cell T cell miR-34/PDL1/PD1 PDL1/PD1 expression [19]
circHIPK3 Cancer cell Macrophages PTK2 M2 macrophage polarization [20]
hsa_circ_0000190 Cancer cell T cell Soluble PD-L1 Immune evasion [21]
circUSP7 (hsa_circ_0005152) Cancer cell T cell miR-934/SHP2 Anti-PD1 therapy resistance [22]
circFARSA Cancer cell Macrophages PTEN/PI3K/AKT M2 macrophage polarization [16]
circSHKBP1 (hsa_circ_0000936) Cancer cell Macrophages PKM2 M2 polarization and macrophage recruitment [23]
胃癌 hsa_circ_0017252 Cancer cell Macrophages miR-17-5p Macrophage M2 polarization [25]
食管癌 Circ0048117 Cancer cell Macrophages miR-140/ TLR4 M2 Macrophage Polarization [26]
胆管癌 Circ_0020256 (hsa_Circ_0020256) Tumor-associated macrophages NA miR-432-5p/E2F3 NA [40]
circ-PTPN22(hsa_circ_0110529) Cancer cell T cell、Neutrophil、Macrophages NA T cell exhaustion and neutrophil extracellular traps [27]
circ-ADAMTS6(hsa_circ_0072688) Cancer cell T cell、Neutrophil、Macrophages NA T cell exhaustion and neutrophil extracellular traps
肝细胞癌 circGSE1(hsa_circ_0000722) Cancer cell Regulatory T cell miR-324-5p/TGFBR1/Smad3 Expansion of regulatory T cells [28]
circTMEM181(hsa_circ_0001663) Cancer cell Macrophages miR-488-3p/CD39 Anti-PD1 therapy resistance [29]
hsa_circ_0074854 Cancer cell Macrophages Human antigen R (HuR) Macrophage M2 Polarization [30]
circUHRF1(hsa_circ_0048677) Cancer cell NK cell miR-449c-5p/TIM-3 Impairment of IFN-γ and TNF-α secretion in NK cells、Anti-PD1 therapy resistance [31]
hsa_circ_0004658 RBPJ-overexpressed macrophages NA miR-499b-5p/JAM3 NA [43]
结直肠癌 hsa_circ_0050334 Cancer cell macrophages hsa_miR_182_5p/RGS2 Survival [32]
CircPACRGL Cancer cell Neutrophil miR-142-3p/miR-506-3p/TGF-β1 Differentiation of N1 to N2 neutrophils [33]
CircEIF3K Cancer-associated fibroblast NA miR-214/PD-L1 NA [46]
胰腺导管腺癌 Circ_0006790 Bone marrow mesenchymal stem cell T cells CBX7/S100A11 Killing effects of T cells [48]
肾细胞癌 circSAFB2 Cancer cell Macrophages miR-620/JAK1/STAT3 M2 Macrophage Polarization [34]
口腔鳞状细胞癌 hsa_circ_0069313 Cancer cell Regulatory T cell miR-325-3p/Foxp3 CD8+ T cell infiltration [35]
胶质瘤 circNEIL3(hsa_circ_0001460) Cancer cell Tumour associated macrophages IGF2BP3/YAP1 Macrophage infiltration [33]
circBTG2 RBPJ-overexpressed macrophages NA miR-25-3p/PTEN NA [44]
乳腺癌 circPSMA1 Cancer cell NA miR-637/Akt1/β-catenin(cyclin D1) Immunosuppression [36]
circ_0001142(hsa_circ_0001142) Cancer cell Macrophages miR-361-3p /PIK3CB M2 Macrophage Polarization [37]
卵巢癌 Circ0001068(hsa_circ_0001068) Cancer cell T cell miR-28-5P/PD1 T cell apoptosis, disintegration [38]
子宫内膜癌 hsa_circ_0001610 Tumor-associated macrophage NA miR-139-5p NA [41]
前列腺癌 circMID1(hsa_circ_0007718) Myeloid-derived suppressor cells NA miR-506-3p/MID1 NA [51]
图1 外泌体环状RNA的肿瘤免疫机制研究在不同癌种中的分布
图2 外泌体环状RNA在癌症抗PD1治疗耐药中的作用
1
Forouzanfar MH, Alexander L, Anderson HR, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 [J]. Lancet, 2015, 386(10010): 2287-2323.
2
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33.
3
Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation-have anti-inflammatory therapies come of age? [J]. Nat Rev Clin Oncol, 2021, 18(5): 261-279.
4
宁波. 肿瘤免疫与肿瘤免疫逃逸机制 [J]. 中国实用妇科与产科杂志, 2000, 16(6): 339-340.
5
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance [J]. Annu Rev Pathol, 2021,16: 223-249.
6
Galon J, Bruni D. Bruni, tumor immunology and tumor evolution: intertwined histories [J]. Immunity, 2020, 52(1): 55-81.
7
Dolladille C, Ederhy S, Sassier M, et al., Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer [J]. JAMA Oncol, 2020, 6(6): 865-871.
8
Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells [J]. Nat Cell Biol, 2007, 9(6): 654-659.
9
Becker A, Thakur BK, Weiss JM, et al., Extracellular vesicles in cancer: cell-to-cell mediators of metastasis [J]. Cancer Cell, 2016, 30(6): 836-848.
10
Mashouri L, Yousefi H, Aref AR, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance [J]. Mol Cancer, 2019, 18(1): 75.
11
Meng S, Zhou H, Feng Z, et al. CircRNA: functions and properties of a novel potential biomarker for cancer [J]. Mol Cancer, 2017, 16(1): 94.
12
Wang Y, Mo Y, Gong Z, et al. Circular RNAs in human cancer [J]. Mol Cancer, 2017, 16(1): 25.
13
Jeck WR, Sharpless NE. Sharpless, detecting and characterizing circular RNAs [J]. Nat Biotechnol, 2014, 32(5): 453-461.
14
Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis [J]. Cell Res, 2015, 25(8): 981-984.
15
Shi X, Wang B, Feng X, et al. circRNAs and exosomes: A mysterious frontier for human cancer [J]. Mol Ther Nucleic Acids, 2020, 19: 384-392.
16
Chen T, Liu Y, Li C, et al. Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis [J]. Cancer Treat Res Commun, 2021, 28: 100412.
17
Yi Y, Wu M, Zeng H, et al. Tumor-derived exosomal non-coding RNAs: The emerging mechanisms and potential clinical applications in breast cancer [J]. Front Oncol, 2021, 11: 738945.
18
Gao J, Ao YQ, Zhang LX, et al. Exosomal circZNF451 restrains anti-PD1 treatment in lung adenocarcinoma via polarizing macrophages by complexing with TRIM56 and FXR1 [J]. J Exp Clin Cancer Res, 2022, 41(1): 295.
19
Wang J, Zhao X, Wang Y, et al. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma [J]. Cell Death Dis, 2020, 11(1): 32.
20
Katopodi T, Petanidis S, Domvri K, et al. Kras-driven intratumoral heterogeneity triggers infiltration of M2 polarized macrophages via the circHIPK3/PTK2 immunosuppressive circuit [J]. Sci Rep, 2021, 11(1): 15455.
21
Luo YH, Yang YP, Chien CS, et al. Circular RNA hsa_circ_0000190 facilitates the tumorigenesis and immune evasion by upregulating the expression of soluble PD-L1 in non-small-cell lung cancer [J]. Int J Mol Sci, 2021, 23(1): 64.
22
Chen SW, Zhu SQ, Pei X, et al. Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC [J]. Mol Cancer, 2021, 20(1): 144.
23
Chen W, Tang D, Lin J, et al., Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis [J]. Mol Ther Oncolytics, 2022, 24: 470-485.
24
Wang D, Cabalag CS, Clemons NJ, et al., Cyclooxygenases and prostaglandins in tumor immunology and microenvironment of gastrointestinal cancer [J]. Gastroenterology, 2021, 161(6): 1813-1829.
25
Song J, Xu X, He S, et al. Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization [J]. Hum Cell, 2022, 35(5): 1499-1511.
26
Lu Q, Wang X, Zhu J, et al. Hypoxic tumor-derived exosomal circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma [J]. Onco Targets Ther, 2020, 13: 11883-11897.
27
Wang X, Wang G, Wu Z, et al. Exosomal circ-PTPN22 and circ-ADAMTS6 mark T cell exhaustion and neutrophil extracellular traps in Asian intrahepatic cholangiocarcinoma [J]. Mol Ther Nucleic Acids, 2023, 31: 151-163.
28
Huang M, Huang X, Huang N. Huang, exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells [J]. Cancer Sci, 2022, 113(6): 1968-1983.
29
Lu JC, Zhang PF, Huang XY, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma [J]. J Hematol Oncol, 2021, 14(1): 200.
30
Wang Y, Gao R, Li J, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via Interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization [J]. Int J Nanomedicine, 2021, 16: 2803-2818.
31
Zhang PF, Gao C, Huang XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma [J]. Mol Cancer, 2020, 19(1): 110.
32
Lei T, Zhang Y, Wang X, et al. Integrated analysis of the functions and clinical implications of exosome circRNAs in colorectal cancer [J]. Front Immunol, 2022, 13: 919014.
33
Pan Z, Zhao R, Li B, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3 [J]. Mol Cancer, 2022, 21(1): 16.
34
Huang X, Wang J, Guan J, et al. Exosomal circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization [J]. Front Oncol, 2022, 12: 808888.
35
Chen Y, Li Z, Liang J, et al., CircRNA has_circ_0069313 induced OSCC immunity escape by miR-325-3p-Foxp3 axes in both OSCC cells and Treg cells [J]. Aging (Albany NY), 2022, 14(10): 4376-4389.
36
Yang SJ, Wang DD, Zhong SL, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis [J]. Cell Death Dis, 2021, 12(5): 420.
37
Lu C, Shi W, Hu W, et al. Endoplasmic reticulum stress promotes breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate tumor progression [J]. Pharmacol Res, 2022, 177: 106098.
38
Wang X, Yao Y, Jin M. Circ-0001068 is a novel biomarker for ovarian cancer and inducer of PD1 expression in T cells [J]. Aging (Albany NY), 2020, 12(19): 19095-19106.
39
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics [J]. Adv Drug Deliv Rev, 2017, 114: 206-221.
40
Chen S, Chen Z, Li Z, et al. Tumor-associated macrophages promote cholangiocarcinoma progression via exosomal Circ_0020256 [J]. Cell Death Dis, 2022, 13(1): 94.
41
Gu X, Shi Y, Dong M, et al. Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer [J]. Cell Death Dis, 2021, 12(9): 818.
42
Xu H, Zhu J, Smith S, et al., Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization [J]. Nat Immunol, 2012, 13(7): 642-650.
43
Zhang L, Zhang J, Li P, et al., Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3 [J]. Cell Death Dis, 2022, 13(1): 32.
44
Shi L, Cao Y, Yuan W, et al. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN [J]. Cell Death Dis, 2022, 13(5): 506.
45
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis [J]. Nat Med, 2013, 19(11): 1423-1437.
46
Yang K, Zhang J, Bao C. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis [J]. BMC Cancer, 2021, 21(1): 933.
47
Gao F, Chiu SM, Motan DA, et al., Mesenchymal stem cells and immunomodulation: current status and future prospects [J]. Cell Death Dis, 2016, 7(1): e2062.
48
Gao G, Wang L, Li C. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma [J]. Am J Cancer Res, 2022, 12(5): 1934-1959.
49
赵静静,张康. 髓源性抑制细胞在肿瘤免疫治疗中的研究近况 [J]. 右江医学, 2020, 48(4): 300-303.
50
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023 [J]. CA Cancer J Clin, 2023, 73(1): 17-48.
51
Gao F, Xu Q, Tang Z, et al. Exosomes derived from myeloid-derived suppressor cells facilitate castration-resistant prostate cancer progression via S100A9/circMID1/miR-506-3p/MID1 [J]. J Transl Med, 2022, 20(1): 346.
52
胡冬至, 孔大陆. 结直肠癌免疫检查点抑制剂研究进展 [J/OL]. 中华临床医师杂志(电子版), 2021, 15(9): 712-715.
[1] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[2] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[3] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[4] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[5] 邓新军, 李正明, 李文彬. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾原发恶性肿瘤并发于肺癌并脑转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 114-117.
[6] 王志鹏, 张倩, 黄燕华, 孙赟, 方晓明, 施宇佳. 肺鳞癌血清外泌体hsa_circ_0018430的表达和临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 774-778.
[7] 闫卫国, 姜颖, 李叶. 血清外泌体circ-BPTF对COPD急性加重期预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 818-821.
[8] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[9] 张占国. 靶向免疫治疗时代的肝癌肝切除术再思考[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 11-15.
[10] 张宇, 余灵祥, 杨永平, 赵德希, 刁广浩, 杨木易, 赵亮, 刘佳, 李鹏, 张宁, 任辉. 原发性肝癌Ⅲa期降期后肝切除临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 78-82.
[11] 严帅, 岳志强, 赵江华, 陈琳, 吴金柱. 初始不可切除肝癌患者靶向免疫联合治疗后手术切除临床疗效[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 83-87.
[12] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[13] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[14] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[15] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(09): 939-947.
阅读次数
全文


摘要