1 |
Wang X, Yang S, Li S, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents[J]. Gut, 2020, 69(12): 2131-2142.
|
2 |
Rukavina Mikusic NL, Kouyoumdzia NM, Choi MR. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis[J]. Pflugers Arch, 2020, 472(3): 303-320.
|
3 |
Kuipers F, de Boer JF, Staels B. Microbiome modulation of the host adaptive immunity through bile acid modification[J]. Cell Metab, 2020, 31(3): 445-447.
|
4 |
Cai J, Rimal B, Jiang C, et al. Bile acid metabolism and signaling, the microbiota, and metabolic disease[J]. Pharmacol Ther, 2022, 237: 108238.
|
5 |
Luxenburger A, Harris LD, Ure EM, et al. The discovery of 12beta-methyl-17-epi-18-nor-bile acids as potent and selective TGR5 agonists[J]. Eur J Med Chem, 2023, 250: 115143.
|
6 |
Ticho AL, Malhotra P, Dudeja PK, et al. Bile acid receptors and gastrointestinal functions[J]. Liver Res, 2019, 3(1): 31-39.
|
7 |
姚柏宇, 田忠. 胆汁酸及其相关核受体对肠黏膜屏障的影响[J]. 中华肝胆外科杂志, 2020, 26(02): 158-160.
|
8 |
Tiratterra E, Franco P, Porru E, et al. Role of bile acids in inflammatory bowel disease[J]. Ann Gastroenterol, 2018, 31(3): 266-272.
|
9 |
牛鹏飞, 王延召, 曾庆敏, 等. 肠黏膜屏障功能及损伤机制研究进展[J/OL]. 中华临床医师杂志(电子版), 2020, 14(9): 735-739.
|
10 |
Fiorucci S, Distrutti E, Carino A, et al. Bile acids and their receptors in metabolic disorders[J]. Prog Lipid Res, 2021, 82: 101094.
|
11 |
Bakke D, Sun J. Ancient nuclear receptor VDR with new functions: microbiome and inflammation[J]. Inflamm Bowel Dis, 2018, 24(6): 1149-1154.
|
12 |
Fiorucci S, Carino A, Baldoni M, et al. Bile acid signaling in inflammatory bowel diseases[J]. Dig Dis Sci, 2021, 66(3): 674-693.
|
13 |
Yang S, Li A, Wang J, et al. Vitamin D receptor: A novel therapeutic target for kidney diseases[J]. Curr Med Chem, 2018, 25(27): 3256-3271.
|
14 |
李舒, 刘文奇, 傅鹂婕, 等. 溃疡性结肠炎肠道微生物的研究进展[J/OL]. 中华临床医师杂志(电子版), 2015, 9(4): 674-677.
|
15 |
饶翀, 肖新华. 肠道菌群和脂代谢异常[J/OL]. 中华临床医师杂志(电子版), 2016, 10(8): 1053-1055.
|
16 |
Mertowska P, Mertowski S, Wojnicka J, et al. A link between chronic kidney disease and gut microbiota in immunological and nutritional aspects[J]. Nutrients, 2021, 13(10): 3637.
|
17 |
Krukowski H, Valkenburg S, Madella A-M, et al. Gut microbiome studies in CKD: opportunities, pitfalls and therapeutic potential[J]. Nature Reviews Nephrology, 2022, 19(2): 87-101.
|
18 |
Lohia S, Vlahou A, Zoidakis J. Microbiome in chronic kidney disease (CKD): An omics perspective[J]. Toxins (Basel), 2022, 14(3): 176.
|
19 |
Wang F, Li N, Ni S, et al. The effects of specific gut microbiota and metabolites on IgA nephropathy-based on mendelian randomization and clinical validation[J]. Nutrients, 2023, 15(10).
|
20 |
He JW, Zhou XJ, Lv JC, et al. Perspectives on how mucosal immune responses, infections and gut microbiome shape IgA nephropathy and future therapies[J]. Theranostics, 2020, 10(25): 11462-11478.
|
21 |
Coppo R. The gut-renal connection in IgA nephropathy[J]. Semin Nephrol, 2018, 38(5): 504-512.
|
22 |
Gesualdo L, Di Leo V, Coppo R. The mucosal immune system and IgA nephropathy[J]. Semin Immunopathol, 2021, 43(5): 657-668.
|
23 |
Chemouny JM, Gleeson PJ, Abbad L, et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice[J]. Nephrol Dial Transplant, 2019, 34(7): 1135-1144.
|
24 |
Sallustio F, Curci C, Chaoul N, et al. High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients[J]. Nephrology Dialysis Transplantation, 2021, 36(3): 452-464.
|
25 |
Wei H, Wang L, An Z, et al. QiDiTangShen granules modulated the gut microbiome composition and improved bile acid profiles in a mouse model of diabetic nephropathy[J]. Biomedicine & Pharmacotherapy, 2021, 133: 111061.
|
26 |
朱艺平, 陈一平, 赵艳英, 等. 二十味沉香丸调控糖尿病肾病大鼠肠道菌群益生菌构成的机制研究[J/OL]. 中华临床医师杂志(电子版), 2022, 16(6): 572-578.
|
27 |
张大涯, 陈世锔, 陈润祥, 等. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(7): 828-833.
|
28 |
Li X, Wang L, Ma S, et al. Combination of oxalobacter formigenes and veillonella parvula in gastrointestinal microbiota related to bile-acid metabolism as a biomarker for hypertensive nephropathy[J]. Int J Hypertens, 2022, 2022: 5999530.
|
29 |
Chen TH, Cheng CY, Huang CK, et al. Exploring the relevance between gut microbiota-metabolites profile and chronic kidney disease with distinct pathogenic factor[J]. Microbiol Spectr, 2023, 11(1): e0280522.
|
30 |
Guan Y, Chen K, Quan D, et al. The combination of scutellaria baicalensis Georgi and Sophora japonica L. ameliorate renal function by regulating gut microbiota in spontaneously hypertensive rats[J]. Front Pharmacol, 2021, 11: 575294.
|
31 |
Li T, Chiang JY. Nuclear receptors in bile acid metabolism[J]. Drug Metab Rev, 2013, 45(1): 145-155.
|
32 |
邱宇翔, 亢宁苏, 郑露, 等. 胆汁酸核受体与肾脏疾病的研究进展[J]. 国际泌尿系统杂志, 2021, 41(1): 180-182.
|
33 |
Hu H, Shao W, Liu Q, et al. Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion[J]. Nat Commun, 2022, 13(1): 252.
|
34 |
Mori H, Svegliati Baroni G, et al. Farnesoid X receptor, bile acid metabolism, and gut microbiota[J]. Metabolites, 2022, 12(7): 647.
|
35 |
Liu Y, Kang W, Liu S, et al. Gut microbiota-bile acid-intestinal Farnesoid X receptor signaling axis orchestrates cadmium-induced liver injury[J]. Sci Total Environ, 2022, 849: 157861.
|
36 |
Liu Y, Chen K, Li F, et al. Probiotic lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice[J]. Hepatology, 2020, 71(6): 2050-2066.
|
37 |
Schneider KM, Candels LS, Hov JR, et al. Gut microbiota depletion exacerbates cholestatic liver injury via loss of FXR signalling[J]. Nat Metab, 2021, 3(9): 1228-1241.
|
38 |
Ratziu V, Harrison SA, Loustaud-Ratti V, et al. Hepatic and renal improvements with FXR agonist vonafexor in individuals with suspected fibrotic NASH[J]. J Hepatol, 2023, 78(3): 479-492.
|
39 |
Wei H, Wang L, An Z, et al. QiDiTangShen granules modulated the gut microbiome composition and improved bile acid pro fi les in a mouse model of diabetic nephropathy[J]. Biomed Pharmacother, 2021, 133: 111061.
|
40 |
Chatterjee I, Lu R, Zhang Y, et al. Vitamin D receptor promotes healthy microbial metabolites and microbiome[J]. Sci Rep, 2020, 10(1): 7340.
|
41 |
Lu R, Zhang YG, Xia Y, et al. Paneth cell alertness to pathogens maintained by vitamin D receptors[J]. Gastroenterology, 2021, 160(4): 1269-1283.
|
42 |
Zhang YG, Lu R, Wu S, et al. Vitamin D receptor protects against dysbiosis and tumorigenesis via the JAK/STAT pathway in intestine[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(4): 729-746.
|
43 |
Wang F, Hu R, Zhang J, et al. High-dose vitamin D3 supplementation ameliorates renal fibrosis by vitamin D receptor activation and inhibiting TGF-beta1/Smad3 signaling pathway in 5/6 nephrectomized rats[J]. Eur J Pharmacol, 2021, 907: 174271.
|
44 |
Li A, Yi B, Han H, et al. Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway[J]. Autophagy, 2022, 18(4): 877-890.
|
45 |
Martínez-Arias L, Panizo S, Alonso-Montes C, et al. Effects of calcitriol and paricalcitol on renal fibrosis in CKD[J]. Nephrol Dial Transplant, 2021, 36(5): 793-803.
|
46 |
Li X, Fan QL, Ma TK, et al. MYCT1 attenuates renal fibrosis and tubular injury in diabetic kidney disease[J]. iScience, 2023, 26(9): 107609.
|
47 |
Lv Y, Luo YY, Ren HW, et al. The role of pregnane X receptor (PXR) in substance metabolism[J]. Front Endocrinol (Lausanne), 2022, 13: 959902.
|
48 |
窦景云, 古月瑜, 刘旭生. 孕烷X受体在肾脏疾病中的研究进展[J]. 中国现代应用药学, 2022, 39(11): 1503-1508.
|
49 |
Oladimeji PO, Chen T. PXR: More than just a master xenobiotic receptor[J]. Mol Pharmacol, 2018, 93(2): 119-127.
|
50 |
Watanabe A, Marumo T, Kawarazaki W, et al. Berrant DNA methylation of pregnane X receptor underlies metabolic gene alterations in the diabetic kidney[J]. Am J Physiol Renal Physiol, 2018, 314(4): F551-F560.
|