切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (05) : 491 -495. doi: 10.3877/cma.j.issn.1674-0785.2024.05.008

综述

慢性肾脏病患者肌少症机制和诊治的研究进展
奚培培1, 周加军1,()   
  1. 1. 241000 芜湖,皖南医学院第一附属医院血液净化中心
  • 收稿日期:2023-12-28 出版日期:2024-05-15
  • 通信作者: 周加军
  • 基金资助:
    芜湖市科技民生专项基金(2020 ms3-6); 2020年CKD-MBD(NBPIA20QC0103)

Progress in research of sarcopenia in patients with chronic kidney disease: pathogenesis, diagnosis, and treatment

Peipei Xi1, Jiajun Zhou1,()   

  1. 1. Blood Purification Center, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
  • Received:2023-12-28 Published:2024-05-15
  • Corresponding author: Jiajun Zhou
引用本文:

奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.

Peipei Xi, Jiajun Zhou. Progress in research of sarcopenia in patients with chronic kidney disease: pathogenesis, diagnosis, and treatment[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(05): 491-495.

肌少症是一种全身性、退行性的骨骼肌疾病。它与慢性肾脏病密切相关,随着慢性肾脏病进展,肌少症的发生比例也明显上升,这对患者生活质量和预后产生重要影响。本文对慢性肾脏病患者肌少症的发病机制及营养支持、运动训练和药物治疗等诊疗措施进行综述,以期加深临床医务工作者对该疾病的认识,帮助改善慢性肾脏病患者的肌肉功能和质量。

Sarcopenia is a degenerative and systemic skeletal muscle disease that is closely related to chronic kidney disease (CKD). As the number of patients with CKD increases, the incidence of sarcopenia also significantly rises, which has a significant impact on the quality of life and prognosis of patients. This article reviews the pathogenesis of sarcopenia in CKD patients, as well as its diagnostic and therapeutic measures such as nutritional support, exercise training, and drug therapy, aiming to deepen the awareness and understanding of this disease among clinical medical workers and to help improve the prognosis of muscle function and quality in CKD patients.

1
孙枫, 彭佳楠, 郭晓燕, 等. 慢性肾脏病透析患者肌少症的研究进展 [J]. 中国临床实用医学, 2023, 14(3): 75-77.
2
Cawthon PM, Lui LY, Taylor BC, et al. Clinical definitions of sarcopenia and risk of hospitalization in community-dwelling older men: the osteoporotic fractures in men study [J]. J Gerontol A Biol Sci Med Sci, 2017, 72(10): 1383-1389.
3
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48(4): 601.
4
王家圆, 王晓东. 消化系统恶性肿瘤相关肌少症的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(7): 823-827.
5
马金栋, 焦向飞, 蔡婷婷, 等. 肌肉减少症与肝癌研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(3): 356-359.
6
Gulcicek S, Seyahi N. Factors associated with sarcopenia in patients with chronic kidney disease: A cross-sectional single-center study [J]. Med Sci Monit, 2023, 29: e939457.
7
Mori K, Nishide K, Okuno S, et al. Impact of diabetes on sarcopenia and mortality in patients undergoing hemodialysis [J]. BMC Nephrology, 2019, 20(1): 105.
8
Thomas SS, Mitch WE. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin [J]. Clin Exp Nephrol, 2013, 17(2): 174-182.
9
Niida Y, Masuda M, Adachi Y, et al. Reduction of stearoyl-CoA desaturase (SCD) contributes muscle atrophy through the excess endoplasmic reticulum stress in chronic kidney disease [J]. J Clin Biochem Nutr, 2020, 67(2): 179-187.
10
Taketani Y, Koiwa F, Yokoyama K. Management of phosphorus load in CKD patients [J]. Clin Exp Nephrol, 2017, 21(Suppl 1): 27-36.
11
Imi Y, Yabiki N, Abuduli M, et al. High phosphate diet suppresses lipogenesis in white adipose tissue [J]. J Clin Biochem Nutr, 2018, 63(3): 181-191.
12
McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal [J]. J Cell Biol, 2003, 162(6): 1135-1147.
13
Thome T, Kumar RA, Burke SK, et al. Impaired muscle mitochondrial energetics is associated with uremic metabolite accumulation in chronic kidney disease [J]. Jci Insight, 2021, 6(1): e139826.
14
Xu C, Kasimumali A, Guo X, et al. Reduction of mitochondria and up regulation of pyruvate dehydrogenase kinase 4 of skeletal muscle in patients with chronic kidney disease [J]. Nephrology, 2020, 25(3): 230-238.
15
Thome T, Salyers ZR, Kumar RA, et al. Uremic metabolites impair skeletal muscle mitochondrial energetics through disruption of the electron transport system and matrix dehydrogenase activity [J]. Am J Physiol Cell Physiol, 2019, 317(4): C701-C713.
16
Watanabe H, Enoki Y, Maruyama T. Sarcopenia in chronic kidney disease: factors, mechanisms, and therapeutic interventions [J]. Biol Pharm Bull, 2019, 42(9): 1437-1445.
17
Abramowitz MK, Paredes W, Zhang K, et al. Skeletal muscle fibrosis is associated with decreased muscle inflammation and weakness in patients with chronic kidney disease [J]. Am J Physiol Renal Physiol, 2018, 315(6): F1658-F1669.
18
Acuña-Castroviejo D, Rahim I, Acuña-Fernández C, et al. Melatonin, clock genes and mitochondria in sepsis [J]. Cell Mol Life Sci, 2017, 74(21): 3965-3987.
19
Martin RA, Viggars MR, Esser KA. Metabolism and exercise: the skeletal muscle clock takes centre stage [J]. Nat Rev Endocrinol, 2023, 19(5): 272-284.
20
Fernández-Martínez J, Ramírez-Casas Y, Aranda-Martínez P, et al. iMS-Bmal1-/- mice show evident signs of sarcopenia that are counteracted by exercise and melatonin therapies [J]. J Pineal Res, 2024, 76(1): e12912.
21
蒲蕾, 冯韵霖, 洪大情, 等. 蛋白质-能量消耗对血液透析患者预后的影响 [J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1051-1057.
22
Damanti S, Azzolino D, Roncaglione C, et al. Efficacy of nutritional interventions as stand-alone or synergistic treatments with exercise for the management of sarcopenia [J]. Nutrients, 2019, 11(9): 1991.
23
Kashyap S, Shivakumar N, Varkey A, et al. Ileal digestibility of intrinsically labeled hen's egg and meat protein determined with the dual stable isotope tracer method in Indian adults [J]. Am J Clin Nutr, 2018, 108(5): 980-987.
24
Kashyap S, Varkey A, Shivakumar N, et al. True ileal digestibility of legumes determined by dual-isotope tracer method in Indian adults [J]. Am J Clin Nutr, 2019, 110(4): 873-882.
25
Pereira SL, Shoemaker ME, Gawel S, et al. Biomarker changes in response to a 12-week supplementation of an oral nutritional supplement enriched with protein, vitamin D and HMB in malnourished community dwelling older adults with sarcopenia [J]. Nutrients, 2022, 14(6): 1196.
26
Caballero-García A, Pascual-Fernández J, Noriega-González DC, et al. L-Citrulline supplementation and exercise in the management of sarcopenia [J]. Nutrients, 2021, 13(9): 3133.
27
Cheng Z, Lin J, Qian Q. Role of vitamin D in cognitive function in chronic kidney disease [J]. Nutrients, 2016, 8(5): 291.
28
Molina P, Carrero JJ, Bover J, et al. Vitamin D, a modulator of musculoskeletal health in chronic kidney disease [J]. J Cachexia Sarcopenia Muscle, 2017, 8(5): 686-701.
29
Deutz NEP, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group [J]. Clinical Nutrition, 2014, 33(6): 929-936.
30
Bauer J, Biolo G, Cederholm T, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group [J]. J Am Med Dir Assoc, 2013, 14(8): 542-559.
31
Ko GJ, Obi Y, Tortorici AR, et al. Dietary protein intake and chronic kidney disease [J]. Curr Opin Clin Nutr Metab Care, 2017, 20(1): 77-85.
32
Chang G, Shih HM, Pan CF, et al. Effect of low protein diet supplemented with ketoanalogs on endothelial function and protein-bound uremic toxins in patients with chronic kidney disease [J]. Biomedicines, 2023, 11(5): 1312.
33
Murphy CH, McCarthy SN, Roche HM. Nutrition strategies to counteract sarcopenia: a focus on protein, LC n-3 PUFA and precision nutrition [J]. Proc Nutr Soc, 2023, 82(3): 419-431.
34
Twycross-Lewis R, Kilduff LP, Wang G, et al. The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects [J]. Amino Acids, 2016, 48(8): 1843-1855.
35
Sharma B, Yadav DK. L-carnitine and chronic kidney disease: a comprehensive review on nutrition and health perspectives [J]. J Pers Med, 2023, 13(2): 298.
36
Czaya B, Heitman K, Campos I, et al. Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling [R]. Cell Biology, 2022, 18(11): e74782
37
Widmann M, Nieß AM, Munz B. Physical exercise and epigenetic modifications in skeletal muscle [J]. Sports Medicine, 2019, 49(4): 509-523.
38
Watson EL, Gould DW, Wilkinson TJ, et al. Twelve-week combined resistance and aerobic training confers greater benefits than aerobic training alone in nondialysis CKD [J]. Am J Physiol Renal Physiol, 2018, 314(6): F1188-F1196.
39
Noor H, Reid J, Slee A. Resistance exercise and nutritional interventions for augmenting sarcopenia outcomes in chronic kidney disease: a narrative review [J]. J Cachexia Sarcopenia Muscle, 2021, 12(6): 1621-1640.
40
Fuzari HK, Dornelas de Andrade A, A Rodrigues M, et al. Whole body vibration improves maximum voluntary isometric contraction of knee extensors in patients with chronic kidney disease: A randomized controlled trial [J]. Physiother Theory Pract, 2019, 35(5): 409-418.
41
Dent E, Morley JE, Cruz-Jentoft AJ, et al. International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management [J]. J Nutr Health Aging, 2018, 22(10): 1148-1161.
42
Macdonald JH, Marcora SM, Jibani MM, et al. Nandrolone decanoate as anabolic therapy in chronic kidney disease: a randomized phase II dose-finding study [J]. Nephron Clin Pract, 2007, 106(3): c125-135.
43
Feike Y, Zhijie L, Wei C. Advances in research on pharmacotherapy of sarcopenia [J]. Aging Medicine, 2021, 4(3): 221-233.
44
Coto-Montes A, Boga JA, Tan DX, et al. Melatonin as a potential agent in the treatment of sarcopenia [J]. Int J Mol Sci, 2016, 17(10): 1771.
45
Venegas C, García JA, Escames G, et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations [J]. J Pineal Res, 2012, 52(2): 217-227.
46
Mannon EC, O'Connor PM. Alkali supplementation as a therapeutic in chronic kidney disease: what mediates protection? [J]. Am J Physiol Renal Physiol, 2020, 319(6): F1090-F1104.
47
Navaneethan SD, Shao J, Buysse J, et al. Effects of treatment of metabolic acidosis in CKD: a systematic review and meta-analysis [J]. Clin J Am Soc Nephrol, 2019, 14(7): 1011-1020.
48
Kim MY, Shin HY, Cho SC, et al. Silver electroceutical technology to treat sarcopenia [J]. Proc Natl Acad Sci U S A, 2023, 120(33): e2300036120.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 于溟璇, 杜华, 张彩虹, 师迎旭. miRNA-192家族在乳腺癌中的作用机制及诊断价值[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 235-240.
[3] 孙勇, 彭曦. 重视烧伤创面愈合中的葡萄糖代谢以优化营养治疗策略[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 277-281.
[4] 刘明禹, 马兵. 吸入性损伤早期诊断方法及策略的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 356-359.
[5] 周清洁, 蒋萍萍, 梁云, 李琰. 脂质水胶体技术在创面愈合中的应用进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 360-363.
[6] 王宇, 徐芳泉, 周旋, 姚晓峰, 李强. 不断提高分化型甲状腺癌根治性切除规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 473-476.
[7] 孙辉, 李长霖. 分化型甲状腺癌根治性切除术中的关键考量与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 477-481.
[8] 张腾花, 尚培中, 王晓梅, 李晓武, 王金, 苗建军, 刘冰. 外伤性脾破裂三阶梯分层治疗策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 510-512.
[9] 高建新, 王啸飞, 于淼, 路夷平. 局部进展期直肠癌新辅助治疗后行ISR术远切缘距离的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 539-543.
[10] 李阳, 董峰, 曾立鹏. 局部进展期直肠癌新辅助治疗后腹腔镜TaTME与TME中的对比研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 547-550.
[11] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[12] 李飞, 郑灶松, 吴芃, 谭万龙. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——延胡索酸水合酶缺陷型晚期肾细胞癌[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 410-414.
[13] 刘燚隆, 党荣广, 艾蓉, 张凯. 肝硬化合并静脉曲张出血患者内镜治疗后再出血风险的模型建立与验证[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 336-342.
[14] 胡静, 杨秀锦, 侯志云. HBV感染患者外周血ISGs表达水平变化及其与干扰素治疗疗效的关系[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 343-347.
[15] 朱旦华, 卢放根. 以腹水为主要特征的Castleman病16例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 462-473.
阅读次数
全文


摘要