切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 108 -116. doi: 10.3877/cma.j.issn.1674-0785.2025.02.003

临床研究

非体位性阻塞性睡眠呼吸暂停与认知功能障碍的相关性研究
王颖1, 杨焱焱2, 牛雯晓3, 李梦凡4, 张金彪4,()   
  1. 1. 264200 山东威海,山东大学附属威海市立医院内分泌科
    2. 271000 山东泰安,泰安八十八医院神经内科
    3. 264000 山东烟台,滨州医学院第二临床医学院
    4. 264200 山东威海,山东大学附属威海市立医院神经内科
  • 收稿日期:2025-01-23 出版日期:2025-02-15
  • 通信作者: 张金彪

Relationship between nonpositional obstructive sleep apnea and cognitive impairment

Ying Wang1, Yanyan Yang2, Wenxiao Niu3, Mengfan Li4, Jinbiao Zhang4,()   

  1. 1. Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200,China
    2. Department of Neurology, Tai'an 88th Hospital, Tai'an 271000, China
    3. The Second Clinical School of Binzhou Medical University, Yantai 264000, China
    4. Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200,China
  • Received:2025-01-23 Published:2025-02-15
  • Corresponding author: Jinbiao Zhang
引用本文:

王颖, 杨焱焱, 牛雯晓, 李梦凡, 张金彪. 非体位性阻塞性睡眠呼吸暂停与认知功能障碍的相关性研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 108-116.

Ying Wang, Yanyan Yang, Wenxiao Niu, Mengfan Li, Jinbiao Zhang. Relationship between nonpositional obstructive sleep apnea and cognitive impairment[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(02): 108-116.

目的

探讨夜间睡眠体位对阻塞性睡眠呼吸暂停(OSA)患者认知功能的影响。

方法

招募2019年1月至2022年4月就诊于威海市立医院睡眠医学中心的成年打鼾患者,对所有患者进行夜间多导睡眠监测(PSG),并于次日清晨进行神经心理学量表评估,采集外周血样本,测定神经源性外泌体(NDEs)中的阿尔茨海默病(AD)生物标志物(Aβ42、T-tau和P-T181-tau)和星形胶质细胞源性外泌体(ADEs)中的补体蛋白(C3b和C5b-9)水平。根据不同体位下呼吸暂停低通气指数(AHI)的数值将其分为2组:体位组和非体位组。

结果

与体位性阻塞性睡眠呼吸暂停(POSA)患者相比,非体位性阻塞性睡眠呼吸暂停(NPOSA)患者罹患轻度认知功能障碍(MCI)的风险更高(OR:2.198,95%CI:1.201~4.022,P=0.011),NDEs来源的Aβ42和T-tau以及ADEs来源的C3和C5b-9部分介导了NPOSA认知功能障碍。

结论

睡眠姿势对OSA患者认知功能障碍存在重要影响,AD生物标志物和补体蛋白可能参与了NPOSA患者认知功能障碍的发生发展。

Objective

To investigate the effect of nocturnal sleep position on cognitive performance in patients with obstructive sleep Apnea (oSA).

Methods

Adult snorers attending the Sleep Medicine Center of Weihai Municipal Hospital from January 2019 to April 2022 were subjected to nocturnal polysomnography (PSG) with cognitive assessment of neuropsychological scales and collection of peripheral blood samples in the early morning of the following day. The levels of Alzheimer's disease (AD) biomarkers(Aβ42, T-tau, and P-T181-tau) in neuronal exosomes (NDEs) and complement proteins (C3b and C5b-9)in astrocyte-derived exosomes (ADEs) were measured. They were divided into either a postural group or a non-postural group according to the apnea hyponea index (AHI) in different positions in the PSG.

Results

Compared with patients with positional OSA (POSA), patients with non-positional OSA (NPOSA) had a higher risk of developing mild cognitive impairment (MCI) (odds ratio: 2.198, 95% confidence interval:1.201~4.022, P=0.011). The levels of Aβ42 and T-tau from NDEs, as well as C3b and C5b-9 from ADEs,partially mediate the effects of NPOSA on cognitive impairment.

Conclusion

Nocturnal sleep position has an important impact on cognitive dysfunction in OSA patients, and AD biomarkers and complement proteins may be involved in the occurrence and development of cognitive dysfunction in NPOSA patients.

图1 研究对象描述
表1 POSA组和NPOSA组一般资料比较
患者一般资料 POSA(n=61) NPOSA(n=151) P
年龄[岁,MQ1Q3)] 60.00(52.00,68.50) 59.00(50.00,66.00) 0.518
男性[n(%)] 40(65.60) 116(76.80) 0.093
BMI[kg/m2MQ1Q3)] 25.70(24.10,28.30) 27.80(25.40,30.10) <0.001
受教育年限[ 年,MQ1Q3)] 12.00(8.00,14.00) 11.00(8.00,13.00) 0.737
高血压病[n(%)] 28(45.90) 96(63.60) <0.001
糖尿病[n(%)] 15(24.60) 35(23.20) 0.827
高脂血症[n(%)] 20(32.80) 67(44.40) 0.121
收缩压[mmHg,MQ1Q3)] 135.00(125.00,147.00) 140.00(130.00,157.00) 0.018
舒张压[mmHg,MQ1Q3)] 82.00(75.50,89.00) 86.00(80.00,92.00) 0.019
葡萄糖[mmol/L,MQ1Q3)] 5.39(4.90,6.83) 5.53(5.00,6.43) 0.627
甘油三酯[mmol/L,MQ1Q3)] 1.41(1.02,1.84) 1.66(1.16,2.26) 0.028
低密度脂蛋白胆固醇[mmol/L,MQ1Q3)] 2.45(2.06,3.23) 2.81(2.35,3.29) 0.117
总胆固醇[mmol/L,mean±SD] 4.48±1.17 4.69±1.24 0.250
吸烟[n(%)] 14(23.00) 40(26.5) 0.592
饮酒[n(%)] 15(24.6) 54(35.8) 0.116
ESS[分,MQ1Q3)] 7.00(5.00,10.00) 10.00(6.00,13.00) 0.004
MMSE[分,MQ1Q3)] 29.00(27.00,30.00) 28.00(27.00,30.00) 0.304
MoCA[分,MQ1Q3)] 26.00(24.00,27.00) 24.00(21.00,27.00) 0.003
HAMA[分,MQ1Q3)] 7.00(3.00,10.00) 6.00(3.00,10.00) 0.546
HAMD-17[分,MQ1Q3)] 5.00(2.50,9.00) 6.00(3.00,8.00) 0.951
AHI[次/h,MQ1Q3)] 16.20(9.15,24.10) 46.20(24.30,66.20) <0.001
ODI[次/h,MQ1Q3)] 10.50(5.45,21.55) 37.40(18.20,60.20) <0.001
觉醒指数[次/h,MQ1Q3)] 11.80(5.70,21.80) 22.30(9.60,38.70) <0.001
Mean SaO2[%,MQ1Q3)] 95.00(94.00,96.00) 94.00(92.00,95.00) <0.001
Min SaO2[%,MQ1Q3)] 87.00(80.00,89.00) 79.00(69.00,85.00) <0.001
T90[%,MQ1Q3)] 0.70(0.10,3.40) 7.90(1.10,21.90) <0.001
睡眠潜伏期[min,MQ1Q3)] 25.00(12.75,56.50) 18.00(5.70,35.00) 0.010
总睡眠时间[min,MQ1Q3)] 391.4(355.00,432.75) 384.00(319.00,420.00) 0.117
睡眠效率[%,MQ1Q3)] 75.50(71.10,81.68) 76.15(65.90,84.10) 0.965
仰卧时间[%,mean±SD] 44.96±21.62 46.00±23.63 0.766
N1[%,MQ1Q3)] 14.40(8.80,18.10) 15.80(11.20,-26.30) 0.003
N2[%,MQ1Q3)] 52.10(45.85,56.95) 51.60(46.20,60.30) 0.543
N3[%,mean±SD] 19.27±6.57 14.17±7.43 <0.001
REM[%,mean±SD] 15.50±6.03 13.16±5.63 0.008
图2 POSA组和NPOSA组AD病理蛋白和补体蛋白的比较 注:NPOSA为非体位性阻塞性睡眠呼吸暂停;POSA为体位性阻塞性睡眠呼吸暂停;NDEs为神经源性外泌体;Aβ42为淀粉样蛋白-β42;T-tau,总tau蛋白;P-T181-tau为苏氨酸181处磷酸化的tau蛋白;ADEs为星形胶质细胞源性外泌体
表2 NPOSA患者MCI的Logistic回归分析[例(%)]
图3 NPOSA患者睡眠特征与认知及子域的相关性 注:MoCA为蒙特利尔认知量表;T90%为血氧饱和度<90%的时间占比;N1%为非快速眼动睡眠1期的持续时间占比;N3%为非快速眼动睡眠1期的持续时间占比
图4 AD生物标志物和补体蛋白在NPOSA患者认知障碍中的中介作用。图a为Aβ42在NPOSA与MoCA评分相关性中的中介作用;图b为T-tau在NPOSA与MoCA评分相关性中的中介作用;图c为C3b在NPOSA与MoCA评分相关性中的中介作用;图d为C5b-9在NPOSA与MoCA评分相关性中的中介作用 注:NPOSA为非体位性阻塞性睡眠呼吸暂停;MoCA为蒙特利尔认知量表
1
Patel SR. Obstructive sleep apnea [J]. Ann Intern Med, 2019, 171(11):81-96.
2
Lévy P, Kohler M, Mcnicholas WT, et al. Obstructive sleep apnoea syndrome [J]. Nat Rev Dis Primers, 2015, 1(1): 15015.
3
Young T, Palta M, Dempsey J, et al. The occurrence of sleepdisordered breathing among middle-aged adults [J]. N Engl J Med,1993, 328(17): 1230-1235.
4
Bubu OM, Brannick M, Mortimer J, et al. Sleep, cognitive impairment,and Alzheimer's disease: a systematic review and meta-analysis [J].Sleep, 2017, 40(1): zsw032.
5
Olaithe M, Bucks RS, Hillman DR, et al. Cognitive deficits in obstructive sleep apnea: insights from a meta-review and comparison with deficits observed in COPD, insomnia, and sleep deprivation [J].Sleep Med Rev, 2018, 38: 39-49.
6
Bubu OM, Andrade AG, Umasabor-Bubu OQ, et al. Obstructive sleep apnea, cognition and Alzheimer's disease: a systematic review integrating three decades of multidisciplinary research [J]. Sleep Med Rev, 2020, 50: 101250.
7
Bucks RS, Olaithe M, Rosenzweig I, et al. Reviewing the relationship between OSA and cognition: where do we go from here? [J].Respirology, 2017, 22(7): 1253-1261.
8
Joosten SA, Edwards BA, Wellman A, et al. The effect of body position on physiological factors that contribute to obstructive sleep apnea [J]. Sleep, 2015, 38(9): 1469-1478.
9
Verhelst E, Clinck I, Deboutte I, et al. Positional obstructive sleep apnea in children: prevalence and risk factors [J]. Sleep Breath, 2019,23(4): 1323-1330.
10
王爽. 儿童非体位性阻塞性睡眠呼吸暂停的临床特征及影响因素分析 [D].唐山: 华北理工大学, 2022.
11
Oksenberg A, Gadoth N, Töyräs J, et al. Prevalence and characteristics of positional obstructive sleep apnea (POSA) in patients with severe OSA [J]. Sleep Breath, 2020, 24: 551-559.
12
Sabil A, Blanchard M, Trzepizur W, et al. Positional obstructive sleep apnea within a large multicenter French cohort: prevalence,characteristics, and treatment outcomes [J]. J Clin Sleep Med, 2020,16(12): 2037-2046.
13
Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea [J]. J Clin Invest. 2020;130(10):5042-5051.
14
Zhou J, Camacho M, Tang X, et al. A review of neurocognitive function and obstructive sleep apnea with or without daytime sleepiness [J]. Sleep Med, 2016, 23: 99-108.
15
Alomri RM, Kennedy GA, Wali SO, et al. Differential associations of hypoxia, sleep fragmentation, and depressive symptoms with cognitive dysfunction in obstructive sleep apnea [J]. Sleep, 2021, 44(4): zsaa213.
16
Kuo CY, Hsiao HT, Lo IH, et al. Association between obstructive sleep apnea, its treatment, and Alzheimer's disease: systematic mini-review[J]. Front Aging Neurosci. 2021 Jan 6;12:591737.
17
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism:Key pathophysiological modulators promote neurodegeneration,cognitive impairment, and Alzheimer's disease [J]. J Neurosci Res,2017, 95(4): 943-972.
18
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosome [J]. Science, 2020, 367(6478): eaau6977.s
19
Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid [J]. Alzheimers Dement, 2019,15(8): 1071-1080.
20
Delgado-Peraza F, Nogueras-Ortiz CJ, Volpert O, et al. Neuronal and astrocytic extracellular vesicle biomarkers in blood reflect brain pathology in mouse models of Alzheimer's disease. Cells [J]. 2021,10(5): 993.
21
Yang Y, Li M, Leng B, et al. Alzheimer's disease biomarkers and complement proteins mediate the impact of sleep fragmentation on cognitive impairment in obstructive sleep Apnea patients without dementia [J]. J Alzheimers Dis, 2023, 95(4): 1685-1696.
22
Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine [J].J Clin Sleep Med, 2012, 8(5): 597-619.
23
Li M, Sun C, Xue S, et al. Complement protein levels in serum astrocyte-derived exosomes are associated with cognitive impairment in obstructive sleep apnea [J]. J Clin Sleep Med, 2023, 19(4): 727-739.
24
Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairmentbeyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment [J]. J Intern Med, 2004,256(3): 240-246.
25
Leng Y, McEvoy CT, Allen IE, et al. Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment: a systematic review and meta-analysis [J]. JAMA Neurol, 2017, 74(10):1237-1245.
26
Bucks RS, Olaithe M, Eastwood P. Neurocognitive function in obstructive sleep apnoea: a meta-review [J]. Respirology, 2013, 18(1):61-70.
27
Al Oweidat K, Toubasi AA, Albtoosh AS, et al. Comparing the characteristics of positional and nonpositional sleep apnea patients among the Jordanian population [J]. Ann Thorac Med, 2022, 17(4):207-213.
28
Kim KT, Cho YW, Kim DE, et al. Two subtypes of positional obstructive sleep apnea: supine-predominant and supine-isolated [J].Clin Neurophysiol, 2016, 127(1): 565-570.
29
Aloia MS, Arnedt JT, Davis JD, et al. Neuropsychological sequelae of obstructive sleep apnea-hypopnea syndrome: a critical review [J]. J Int Neuropsychol Soc, 2004, 10(5): 772-785.
30
Oksenberg A, Gadoth N. Are we missing a simple treatment for most adult sleep apnea patients? The avoidance of the supine sleep position[J]. J Sleep Res, 2014, 23(2): 204-210.
31
Ravesloot MJ, White D, Heinzer R, et al. Efficacy of the new generation of devices for positional therapy for patients with positional obstructive sleep apnea: a systematic review of the literature and metaanalysis [J]. J Clin Sleep Med, 2017, 13(6): 813-824.
32
Yingjuan M, Siang WH, Alvin TKL, et al. Positional therapy for positional obstructive sleep apnea [J]. Sleep Med Clin, 2020, 15(2):261-275.
33
Akahoshi R, Yanamoto S, Sakamoto Y, et al. Effects of sleep position on the treatment response of oral appliance for obstructive sleep apnea[J]. Cranio, 2020, 40(3): 262-267.
34
Daulatzai MA. Evidence of neurodegeneration in obstructive sleep apnea: relationship between obstructive sleep apnea and cognitive dysfunction in the elderly [J]. J Neurosci Res, 2015, 93(12): 1778-1794.
35
Aisen PS, Cummings J, Jack CR, et al. On the path to 2025:understanding the Alzheimer's disease continuum [J]. Alzheimers Res Ther, 2017, 9: 1-10.
36
Kong W, Zheng Y, Xu W, et al. Biomarkers of Alzheimer's disease in severe obstructive sleep apnea-hypopnea syndrome in the Chinese population [J]. Eur Arch Otorhinolaryngol, 2021, 278(3): 865-872.
37
Sharma RA, Varga AW, Bubu OM, et al. Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. A longitudinal study [J]. Am J Respir Crit Care Med, 2018, 197(7): 933-943.
38
Spira AP, Yager C, Brandt J, et al. Objectively measured sleep and β-amyloid burden in older adults: a pilot study [J]. Sage Open Med,2014, 2: 1-12.
39
Díaz-Román M, Pulopulos MM, Baquero M, et al. Obstructive sleep apnea and Alzheimer's disease-related cerebrospinal fluid biomarkers in mild cognitive impairment [J]. Sleep, 2021, 44(1): zsaa133.
40
Tideman P, Stomrud E, Leuzy A, et al. Association of β-amyloid accumulation with executive function in adults with unimpaired cognition [J]. Neurology, 2022, 98(15): e1525-e1533.
41
Jones DT, Graff-Radford J, Lowe VJ, et al. Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum [J].Cortex, 2017, 97: 143-159.
42
Pelkmans W, Legdeur N, Ten Kate M, et al. Amyloid-β, cortical thickness, and subsequent cognitive decline in cognitively normal oldest-old [J]. Ann Clin Transl Neurol, 2021, 8(2): 348-358.
43
Gabryelska A, Turkiewicz S, Karuga FF, et al. Disruption of circadian rhythm genes in obstructive sleep apnea patients-possible mechanisms involved and clinical implication [J]. Int J Mol Sci, 2022, 23(2): 709.
44
龚何燕, 戴俊, 杨惠明, 等. VEGF、IL-6 在阻塞性睡眠呼吸暂停低通气综合征诊断及手术治疗中的价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(11): 1000-1006.
45
Horvath P, Tarnoki DL, Tarnoki AD, et al. Complement system activation in obstructive sleep apnea [J]. J Sleep Res, 2018, 27(6):e12674.
46
Noris M, Remuzzi G. Overview of complement activation and regulation [J]. Semin Nephrol, 2013, 33(6): 479-492.
47
Shah A, Kishore U, Shastri A. Complement system in Alzheimer's disease [J]. Int J Mol Sci, 2021, 22(24): 13647.
48
Sun H, Gao Y, Li M, et al. Altered amyloid-β and tau proteins in neural-derived plasma exosomes in obstructive sleep apnea [J]. Sleep Med, 2022, 94: 76-83.
49
Xue S, Li MF, Leng B, et al. Complement activation mainly mediates the association of heart rate variability and cognitive impairment in adults with obstructive sleep apnea without dementia [J]. Sleep, 2023,46(2): zsac146.
50
Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future [J]. Annu Rev Pathol, 2018, 13(1): 379-394.
51
Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain-implications for Alzheimer disease [J]. Nat Rev Neurol,2015, 11(8): 457-470.
52
Levendowski DJ, Gamaldo C, St. Louis EK, et al. Head position during sleep: potential implications for patients with neurodegenerative disease [J]. J Alzheimers Dis, 2019, 67(2): 631-638.
53
Shokri-Kojori E, Wang GJ, Wiers CE, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation [J]. Proc Natl Acad Sci USA, 2018, 115(17): 4483-4488.
54
Lucey BP, Hicks TJ, Mcleland JS, et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics [J]. Ann Neurol, 2018, 83(1):197-204.
55
Lee H, Xie L, Yu M, et al. The effect of body posture on brain glymphatic transport [J]. J Neurosci, 2015, 35(31): 11034-11044.
[1] 刘子奇, 刘思奇, 陶梦娇, 任永颖, 李冠男, 孙静, 王昕, 张建昭, 杨健. 整合视听连续执行测试结果与注意力缺陷多动障碍患儿认知功能特点关系[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 39-46.
[2] 黄云大, 周琪, 何冬慧, 黄敏方. 基于计算流体力学对阻塞性睡眠呼吸暂停患者治疗前后上气道流场对比分析的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 139-144.
[3] 罗丹, 柏宋磊, 易峰. HMGB1-TLR2/TLR4/RAGE通路与颅脑损伤并发认知功能障碍病情变化的关系研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 28-34.
[4] 张骞, 唐伟, 刘丽丽. 右美托咪定复合羟考酮对老年经皮椎间孔镜腰椎间盘切除术患者术后认知功能、镇痛效果的影响[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 209-214.
[5] 胡贤瑞, 伍振国, 何竟. 高压氧治疗创伤性脑损伤患者认知功能障碍疗效的Meta分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 21-36.
[6] 龚何燕, 戴俊, 杨惠明, 李硕, 徐敏, 宋红毛, 怀德. VEGF、IL-6 在阻塞性睡眠呼吸暂停低通气综合征诊断及手术治疗中的价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(11): 1000-1006.
[7] 张克, 杨占奇, 闫维, 张二明, 向平超. 持续气道正压通气对阻塞性睡眠呼吸暂停综合征患者发生心脑血管事件的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 433-440.
[8] 黄灏宇, 庄泽森, 林万庆, 石娇, 袁旭, 王单, 周晓媚, 万义文, 林源, 陈尚杰. 调神益智艾灸治疗遗忘型轻度认知障碍的弥散张量成像研究[J/OL]. 中华针灸电子杂志, 2024, 13(02): 58-64.
[9] 高昊雯, 王桂琦, 庞利云, 张新昕, 谷敬锋. 减重手术治疗肥胖症相关认知障碍的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 206-212.
[10] 吴亚琨, 冯凯, 于海华. 数字疗法对非痴呆型脑小血管病认知障碍患者认知功能、日常生活能力及生活质量的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 535-541.
[11] 克地尔牙·马合木提, 胡波, 杨琼, 闫素, 胡岚卿, 高沛沛, 姚恩生. 依达拉奉右莰醇对急性脑梗死后认知功能障碍的疗效观察[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 459-466.
[12] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[13] 董立羚, 王添艺, 毛晨晖, 姜宇涵, 尚丽, 包嘉璐, 仇宇悦, 褚珊珊, 金蔚, 倪俊, 高晶. 非出血型脑淀粉样血管病的认知特征——来自北京协和医院痴呆队列的数据[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 295-300.
[14] 左舜之, 张志强, 肖云燚, 江娇, 何亚玲, 刘羽. 针刺结合重复经颅磁刺激改善脑卒中患者单侧忽略的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(02): 134-139.
[15] 刘婷, 杨逸昊, 李仙, 李丽娟, 马琳, 李其富. 重复经颅磁刺激治疗卒中后认知功能障碍的静息态功能磁共振研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 81-85.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?