1 |
Wang F, Fan J, Zhang Z, et al. The global burden of liver disease: the major impact of China [J]. Hepatology (Baltimore, Md.), 2014, 60(6):2099-2108.
|
2 |
Angeli P, Garcia-Tsao G, Nadim MK, et al. News in pathophysiology,definition and classification of hepatorenal syndrome: A step beyond the International Club of Ascites (ICA) consensus document [J]. J Hepatol, 2019, 71(4): 811-822.
|
3 |
Piano S, Rosi S, Maresio G, et al. Evaluation of the Acute Kidney Injury Network criteria in hospitalized patients with cirrhosis and ascites [J]. J Hepatol, 2013, 59(3): 482-489.
|
4 |
Durand F, Olson JC, Nadim MK. Renal dysfunction and cirrhosis [J].Curr Opin Crit Care, 2017, 23(6): 457-462.
|
5 |
Desai AP, Knapp SM, Orman ES, et al. Changing epidemiology and outcomes of acute kidney injury in hospitalized patients with cirrhosisa US population-based study [J]. J Hepatol, 2020, 73(5): 1092-1099.
|
6 |
王朋, 李泽宇, 蒋亚婷, 等. MELD评分、ALBI评分联合β2-微球蛋白对肝硬化合并急性肾损伤的预测价值 [J]. 临床肝胆病杂志,2023, 39(12): 2839-2844.
|
7 |
潮燕, 陈聪. 基于Nomogram建立肝硬化并发急性肾损伤的风险评估模型 [J]. 中南医学科学杂志, 2023, 51(5): 771-774.
|
8 |
Bewick V, Cheek L, Ball J. Statistics review 14: Logistic regression [J].Crit Care, 2005, 9(1): 112-118.
|
9 |
Siriborvornratanakul T. Human behavior in image-based road health inspection systems despite the emerging autoML [J]. J Big Data, 2022,9(1): 96.
|
10 |
Alsharef A, Aggarwal K, Kumar M, et al. Review of ML and autoML solutions to forecast time-series data [J]. Arch Comput Methods Eng,2022, 29(7): 5297-5311.
|
11 |
王甘红, 陈健, 沈支佳, 等. 基于自动化机器学习建立结肠镜肠道准备失败风险预测模型及评价 [J]. 中国内镜杂志, 2024, 30(5):36-47.
|
12 |
Shi Y, Lin J, Zhu J, et al. Predicting the recurrence of common bile duct stones after ERCP treatment with automated machine learning algorithms [J]. Dig Dis Sci, 2023, 68(7): 2866-2877.
|
13 |
中华医学会消化病学分会. 中国肝硬化临床诊治共识意见 [J]. 中华消化杂志, 2023, 43(4): 227-247.
|
14 |
Flamm SL, Wong F, Ahn J, et al. AGA clinical practice update on the evaluation and management of acute kidney injury in patients with cirrhosis: expert review [J]. Clin Gastroenterol Hepatol, 2022, 20(12):2707-2716.
|
15 |
Chen Y, Liu X, Gao L, et al. Using the H2O automatic machine learning algorithms to identify predictors of web-based medical record nonuse among patients in a data-rich environment: mixed methods study [J]. JMIR Med Inform, 2023, 11: e41576.
|
16 |
Nohara Y, Matsumoto K, Soejima H, et al. Explanation of machine learning models using shapley additive explanation and application for real data in hospital [J]. Comput Methods Programs Biomed, 2022,214: 106584.
|
17 |
Fahmy AS, Csecs I, Arafati A, et al. An explainable machine learning approach reveals prognostic significance of right ventricular dysfunction in nonischemic cardiomyopathy [J]. JACC Cardiovasc Imaging, 2022, 15(5): 766-779.
|
18 |
Tariq R, Hadi Y, Chahal K, et al. Incidence, mortality and predictors of acute kidney injury in patients with cirrhosis: a systematic review and meta-analysis [J]. J Clin Transl Hepatol, 2020, 8(2): 135-142.
|
19 |
Ning Y, Zou X, Xu J, et al. Impact of acute kidney injury on the risk of mortality in patients with cirrhosis: a systematic review and metaanalysis [J]. Ren Fail, 2022, 44(1): 1-14.
|
20 |
赵静涵, 陈玉龙, 张琛. 超声参数与UPJO致肾积水患儿肾功能的相关性分析 [J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(4):372-376.
|
21 |
Mindikoglu AL, Dowling TC, Magder LS, et al. Estimation of glomerular filtration rate in patients with cirrhosis by using new and conventional filtration markers and dimethylarginines [J]. Clin Gastroenterol Hepatol, 2016, 14(4): 624-632.e2.
|
22 |
Sawada Y, Shiraki M, Iwasa M, et al. The effects of diuretic use and the presence of ascites on muscle cramps in patients with cirrhosis: a nationwide study [J]. J Gastroenterol, 2020, 55(9): 868-876.
|
23 |
Montano-Loza AJ, Meza-Junco J, Prado CM, et al. Muscle wasting is associated with mortality in patients with cirrhosis [J]. Clin Gastroenterol Hepatol, 2012, 10(2): 166-73, 173.e1.
|
24 |
Wang R, Hu H, Hu S, et al. β2-microglobulin is an independent indicator of acute kidney injury and outcomes in patients with intracerebral hemorrhage [J]. Medicine (Baltimore), 2020, 99(8):e19212.
|
25 |
陈杰桓, 许志荣, 刘颖培, 等. 超声造影对急性肾损伤治疗后肾血流灌注水平的评价 [J/OL]. 中华腔镜泌尿外科杂志(电子版),2023, 17(1):58-62.
|
26 |
褚雪倩, 周炜, 黄萱, 等. 乙肝肝硬化腹水患者发生急性肾损伤的影响因素及预测模型 [J]. 临床肾脏病杂志, 2024, 24(8): 623-628.
|
27 |
Murphree DH, Quest DJ, Allen RM, et al. Deploying predictive models in a healthcare environment - an open source approach [J].Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 6112-6116.
|