切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 388 -391. doi: 10.3877/cma.j.issn.1674-0785.2025.05.009

综述

肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展
武世伦1, 姚常玉1, 许力1, 狄治杉1, 夏奇2, 孙文兵1, 孔健1,()   
  1. 1100043 北京,首都医科大学附属北京朝阳医院肝胆胰脾外科
    2122000 辽宁朝阳,朝阳市中心医院肝胆胰脾外科
  • 收稿日期:2025-02-22 出版日期:2025-05-15
  • 通信作者: 孔健
  • 基金资助:
    国家自然科学基金(82272760); 北京市自然科学基金(7212044); 北京市医院管理中心青年人才培养"青苗"项目(QML2019 0306)

Progress in understanding the role of tumor-associated macrophages in hepatocellular carcinoma angiogenesis

Shilun Wu1, Changyu Yao1, Li Xu1, Zhishan Di1, Qi Xia2, Wenbing Sun1, Jian Kong1,()   

  1. 1Department of Hepatobiliary-Pancreatic-Splenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
    2Department of Hepatobiliary-Pancreatic-Splenic Surgery, Chaoyang Central Hospital, Liaoning 122000, China
  • Received:2025-02-22 Published:2025-05-15
  • Corresponding author: Jian Kong
引用本文:

武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.

Shilun Wu, Changyu Yao, Li Xu, Zhishan Di, Qi Xia, Wenbing Sun, Jian Kong. Progress in understanding the role of tumor-associated macrophages in hepatocellular carcinoma angiogenesis[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(05): 388-391.

肿瘤相关巨噬细胞(TAMs)是肝细胞癌(HCC)肿瘤微环境(TME)的必要组成部分,参与HCC的增殖、侵袭性迁移、血管生成、肝纤维化进展等过程。TAMs可通过分泌促血管生成因子、与内皮细胞相互对话和增加血管通透性调节HCC的血管新生。本文就TAMs在HCC血管新生中的作用进行综述,以期寻找靶向TAMs抑制肿瘤血管新生的潜在靶点。

Tumor-associated macrophages (TAMs) are essential components of the hepatocellular carcinoma (HCC) tumor microenvironment (TME) and participate in processes such as tumor cell proliferation, invasive migration, angiogenesis, and progression of liver fibrosis in HCC. TAMs can regulate angiogenesis in HCC by secreting pro-angiogenic factors, interacting with endothelial cells, and increasing vascular permeability. This article reviews the role of TAMs in angiogenesis of HCC, aiming to identify potential targets for inhibiting tumor angiogenesis by targeting TAMs.

1
Yuan Y, Wu D, Li J, et al. Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma [J]. Front Pharmacol, 2023, 14: 1217400.
2
Zhang Y, Han G, Gu J, et al. Role of tumor-associated macrophages in hepatocellular carcinoma: impact, mechanism, and therapy [J]. Front Immunol, 2024, 15: 1429812.
3
Yao C, Wu S, Kong J, et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies [J]. Cancer Biol Med, 2023, 20(1): 25-43.
4
Yu M, Yu H, Wang H, et al. Tumorassociated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review) [J]. Int J Oncol, 2024, 65(4): 100.
5
Huang J, Wu Q, Geller DA, et al. Macrophage metabolism, phenotype, function, and therapy in hepatocellular carcinoma (HCC) [J]. J Transl Med, 2023, 21(1): 815.
6
Xie Q, Zeng Y, Zhang X, et al. The significance of lipid metabolism reprogramming of tumor-associated macrophages in hepatocellular carcinoma [J]. Cancer Immunol Immunother, 2024, 73(9): 171.
7
Liu YT, Mao ZW, Ding Y, et al. Macrophages as Targets in Hepatocellular Carcinoma Therapy[J]. Mol Cancer Ther, 2024, 23(6):780-790. doi: 10.1158/1535-7163.MCT-23-0660.PMID: 38310642.
8
Sezginer O, Unver N. Dissection of pro-tumoral macrophage subtypes and immunosuppressive cells participating in M2 polarization [J]. Inflamm Res, 2024, 73(9): 1411-1423.
9
Fuchs AL, Costello SM, Schiller SM, et al. Primary human M2 macrophage subtypes are distinguishable by aqueous metabolite profiles [J]. Int J Mol Sci, 2024, 25(4): 2407.
10
Zhang Q, Sioud M. Tumor-associated macrophage subsets: shaping polarization and targeting [J]. Int J Mol Sci, 2023, 24(8): 7493.
11
Li P, Ma C, Li J, et al. Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells [J]. J Zhejiang Univ Sci B, 2022, 23(5): 407-422.
12
Park SM, Chen CJ, Verdon DJ, et al. Proliferating macrophages in human tumours show characteristics of monocytes responding to myelopoietic growth factors [J]. Front Immunol, 2024, 15: 1412076.
13
Franklin RA, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages [J]. Science, 2014, 344(6186):921-925.
14
Wang Y, Liu H, Zhang Z, et al. G-MDSC-derived exosomes mediate the differentiation of M-MDSC into M2 macrophages promoting colitis-to-cancer transition [J]. J Immunother Cancer, 2023, 11(6): e006166.
15
Xun J, Zhou S, Lv Z, et al. Dioscin modulates macrophages polarization and MDSCs differentiation to inhibit tumorigenesis of colitis-associated colorectal cancer [J]. Int Immunopharmacol, 2023, 117: 109839.
16
Su MT, Kumata S, Endo S, et al. LILRB4 promotes tumor metastasis by regulating MDSCs and inhibiting miR-1 family miRNAs [J]. Oncoimmunology, 2022, 11(1): 2060907.
17
Zhang C, Sui Y, Liu S, et al. The roles of myeloid-derived suppressor cells in liver disease [J]. Biomedicines, 2024, 12(2): 299.
18
Ammarah U, Pereira-Nunes A, Delfini M, et al. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer [J]. Mol Oncol, 2024, 18(7): 1739-1758.
19
Vogel A, Weichhart T. Tissue-resident macrophages - early passengers or drivers in the tumor niche? [J] Curr Opin Biotechnol, 2023, 83: 102984.
20
Zhao J, Andreev I, Silva HM. Resident tissue macrophages: Key coordinators of tissue homeostasis beyond immunity [J]. Sci Immunol, 2024, 9(94): eadd1967.
21
Li X, Li R, Miao X, et al. Integrated single cell analysis reveals an atlas of tumor associated macrophages in hepatocellular carcinoma [J]. Inflammation, 2024, 47(6): 2077-2093.
22
Wang J, Wang Y, Chu Y, et al. Tumor-derived adenosine promotes macrophage proliferation in human hepatocellular carcinoma [J]. J Hepatol, 2021, 74(3): 627-637.
23
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism [J]. Angiogenesis, 2024, 27(3): 333-349.
24
Quaranta V, Ballarò C, Giannelli G. Macrophages orchestrate the liver tumor microenvironment [J]. Cancers (Basel), 2024, 16(9): 1772.
25
Kim DH, Kang YN, Jin J, et al. Glutamine-derived aspartate is required for eIF5A hypusination-mediated translation of HIF-1α to induce the polarization of tumor-associated macrophages [J]. Exp Mol Med, 2024, 56(5): 1123-1136.
26
Kang FB, Wang L, Li D, et al. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression [J]. Oncol Rep, 2015, 33(1): 274-282.
27
Ye M, Lu F, Gu D, et al. Hypoxia exosome derived CEACAM5 promotes tumor-associated macrophages M2 polarization to accelerate pancreatic neuroendocrine tumors metastasis via MMP9 [J]. FASEB J, 2024, 38(13): e23762.
28
Riabov V, Gudima A, Wang N, et al. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis [J]. Front Physiol, 2014, 5: 75.
29
Wang W, Li T, Cheng Y, et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization [J]. Cancer Cell, 2024, 42(5): 815-832.e12.
30
G.Kamiyama M, Pozzi A, Yang L, et al. EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival [J]. Oncogene, 2006, 25(53): 7019-7028.
31
Shao R. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis [J]. Front Physiol, 2013, 4: 122.
32
Thomann S, Weiler SME, Wei T, et al. YAP-induced Ccl2 expression is associated with a switch in hepatic macrophage identity and vascular remodelling in liver cancer [J]. Liver Int, 2021, 41(12): 3011-3023.
33
De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors [J]. Cancer Cell, 2005, 8(3): 211-226.
34
Yao C, Wu S, Kong J, et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies [J]. Cancer Biol Med, 2023, 20(1): 25-43.
35
Coffelt SB, Tal AO, Scholz A, et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions [J]. Cancer Res, 2010, 70(13): 5270-5280.
36
Coffelt SB, Chen YY, Muthana M, et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion [J]. J Immunol, 2011, 186(7): 4183-4190.
37
Hongu T, Pein M, Insua-Rodríguez J, et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs [J]. Nat Cancer, 2022, 3(4): 486-504.
38
Yang F, He Z, Duan H, et al. Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40 [J]. Nat Commun, 2021, 12(1): 3424.
39
Harney AS, Arwert EN, Entenberg D, et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA [J]. Cancer Discov, 2015, 5(9): 932-943.
40
Zhang S, Xie B, Wang L, et al. Macrophage-mediated vascular permeability via VLA4/VCAM1 pathway dictates ascites development in ovarian cancer [J]. J Clin Invest, 2021, 131(3): e140315.
41
Lu Y, Han G, Zhang Y, et al. M2 macrophage-secreted exosomes promote metastasis and increase vascular permeability in hepatocellular carcinoma [J]. Cell Commun Signal, 2023, 21(1): 299.
[1] 顾怡君, 李奕冉, 钱艺, 蒋栋. 基于超声造影定量指标预测肝细胞癌微血管侵犯及评估其复发的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 451-461.
[2] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[3] 赵长燕, 张明慧, 陆春燕. FOXC1和claudin-4在三阴性乳腺癌中的表达及其与肿瘤微环境和炎症相关因子的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 97-102.
[4] 曾繁润, 林永勇, 王君. 间充质干细胞外泌体促进创面血管新生机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 86-89.
[5] 刘新锋, 邓煜麟, 刘孝德, 闫道先, 石双胜, 黄德成, 刘悦, 刘学斌, 许朋, 董传江. 肥大细胞免疫球蛋白样受体1在肾透明细胞癌中的表达及临床意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 483-491.
[6] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[7] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[8] 杨健, 杨璐. 体液外泌体在前列腺癌诊断中的应用前景[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 146-151.
[9] 赵阳, 袁筑慧, 周林, 寇建涛, 郎韧, 贺强, 马军. 非酒精性脂肪性肝病肝癌和病毒性肝炎肝癌肝切除围手术期疗效和安全性的对比分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 402-407.
[10] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[11] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[12] 李娅辉, 栾琳, 黄辉云. 中青年肝癌患者根治术后不同复发时期的风险模型构建及验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 112-119.
[13] 宋陈晨, 梁天赐, 赵悦, 张超贻, 王辉, 问婷芝, 戎彪学. X 型胶原α1 在恶性肿瘤中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 221-228.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 陈文, 张兴华, 严海涛, 张金星, 刘圣, 施海彬, 祖庆泉. 经动脉化疗栓塞术联合仑伐替尼和免疫检查点抑制剂对不可切除肝细胞癌的安全性及有效性[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 117-122.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?