切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 454 -460. doi: 10.3877/cma.j.issn.1674-0785.2025.06.009

综述

多延迟动脉自旋标记成像在急性缺血性脑卒中灌注评估中的研究进展与临床应用
侯志博, 张苗, 卢洁()   
  1. 100053 北京,首都医科大学宣武医院放射与核医学科 北京市磁共振成像脑信息学重点实验室
  • 收稿日期:2025-06-19 出版日期:2025-06-30
  • 通信作者: 卢洁
  • 基金资助:
    汇智人才工程-支持计划-领军人才(HZ2021ZCLJ005)

Multi-delay arterial spin labeling for evaluation of cerebral perfusion in acute ischemic stroke: research progress and clinical application

Zhibo Hou, Miao Zhang, Jie Lu()   

  1. Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
  • Received:2025-06-19 Published:2025-06-30
  • Corresponding author: Jie Lu
引用本文:

侯志博, 张苗, 卢洁. 多延迟动脉自旋标记成像在急性缺血性脑卒中灌注评估中的研究进展与临床应用[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 454-460.

Zhibo Hou, Miao Zhang, Jie Lu. Multi-delay arterial spin labeling for evaluation of cerebral perfusion in acute ischemic stroke: research progress and clinical application[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(06): 454-460.

急性缺血性脑卒中的迅速且精确的灌注评估,于患者的治疗指导和预后评估而言至关重要,随着影像学技术的不断进步,多延迟动脉自旋标记成像(md-ASL)作为一项非侵入性且无辐射的灌注成像技术,渐受关注,此技术可供给脑部血流(CBF)及动脉输运时间(ATT)等核心指标,辅助识别缺血半暗区并预测病灶演变。然而,尽管多项研究已探讨md-ASL在AIS中的应用,参数标准化不足且临床适用性受限等问题依旧存在,因此,本文旨在总结md-ASL在急性缺血性脑卒中灌注评估领域的最新研究成果,深入分析CBF与ATT参数与缺血区核心及半暗带范围及临床结果间的联系,同步研究其在各种再通状态下的临床应用价值及未来发展趋势。

The rapid and precise perfusion assessment of acute ischemic stroke is of paramount significance for treatment guidance and prognosis evaluation. With the continuous progress of imaging technologies, multi-delay pseudocontinuous arterial spin labeling (md-ASL), a non-invasive and radiation-free perfusion imaging technique, has increasingly drawn attention. This technique can provide key parameters such as cerebral blood flow (CBF) and arterial transit time (ATT), which helps to identify the ischemic penumbra and predict the evolution of lesions. However, although numerous studies have investigated the application of md-ASL in acute ischemic stroke (AIS), problems such as insufficient parameter standardization and limited clinical applicability still remain. Therefore, this paper aims to comprehensively summarize the latest research findings on md-ASL in the field of perfusion assessment for acute ischemic stroke, and conduct an in-depth analysis of the relationships between CBF and ATT parameters, the core and penumbra regions of the ischemic area, and clinical outcomes. Meanwhile, the paper explores the clinical application value of md-ASL under various recanalization conditions and its future development trends.

表1 md-ASL与传统灌注技术在识别缺血半暗带中的性能对比[16,39]
1
Junejo HU, Yusuf S, Zeb R, et al. Predictive value of CT brain perfusion studies in acute ischemic infarct taking MRI stroke protocol as gold standard [J]. Cureus, 2021, 13(7): e16501.
2
Taso M, Alsop DC. Arterial spin labeling perfusion imaging [J]. Magn Reson Imaging Clin N Am, 32(1): 63-72.
3
Lin Z, Wang T, Li Y. Reduced cerebral blood flow in benign oligemia relates to poor clinical outcome in acute ischemic stroke patients [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3358-3361.
4
Sasahara M, Yamanaka M, Matsushita T, et al. Evaluation of the ischemic penumbra and prognosis in acute cerebral infarction using cerebral blood flow and delay time derived from multi-delay pCASL imaging [J]. J Med Invest, 2024, 71(3.4): 286-292.
5
Franklin SL, Bones IK, Harteveld AA, et al. Multi-organ comparison of flow-based arterial spin labeling techniques: Spatially non-selective labeling for cerebral and renal perfusion imaging [J]. Magn Reson Med, 2021, 85(5): 2580-2594.
6
Huber J, Günther M, Channaveerappa M, et al. Towards free breathing 3D ASL imaging of the human liver using prospective motion correction [J]. Magn Reson Med, 2022, 88(2): 711-726.
7
Mikayama R, Togao O, Obara M, et al. Multi-delay arterial spin labeling using a variable repetition time scheme in Moyamoya disease: comparison with single-delay arterial spin labeling [J]. Eur J Radiol, 2025, 186: 112034.
8
Liu X, Yin Y, Shan Y, et al. Oxygen extraction fraction mapping based combining quantitative susceptibility mapping and quantitative blood oxygenation level-dependent imaging model using multi-delay PCASL [J]. Brain Res, 2025, 1846: 149259.
9
Li S, Xu Z, Zhang S, et al. Non-coding RNAs in acute ischemic stroke: from brain to periphery [J]. Neural Regen Res, 2025, 20(1): 116-129.
10
Pan J, Wu G, Yu J, et al. Detecting the early infarct core on non-contrast CT images with a deep learning residual network [J]. J Stroke Cerebrovasc Dis, 2021, 30(6): 105752.
11
Gupta A, Vupputuri A, Ghosh N. Delineation of ischemic core and penumbra volumes from MRI using MSNet architecture [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 6730-6733.
12
Jia J, Niu L, Feng P, et al. Identification of novel biomarkers for ischemic stroke through integrated bioinformatics analysis and machine learning [J]. J Mol Neurosci, 2025, 75(1): 13.
13
Brugnara G, Herweh C, Neuberger U, et al. Dynamics of cerebral perfusion and oxygenation parameters following endovascular treatment of acute ischemic stroke [J]. J Neurointerv Surg, 2022, 14(1): neurintsurg-2020-017163.
14
Umerenkov D, Kudin S, Peksheva M, et al. Core-penumbra hyperacute ischemic stroke dataset [J]. Sci Data, 2025, 12(1): 707.
15
Zeng JY, Hu XQ, Xu JF, et al. Diagnostic accuracy of arterial spin-labeling MR imaging in detecting the epileptogenic zone: systematic review and meta-analysis [J]. AJNR Am J Neuroradiol, 2021, 42(6): 1052-1060.
16
Yan C, Yu F, Zhang Y, et al. Multidelay arterial spin labeling versus computed tomography perfusion in penumbra volume of acute ischemic stroke [J]. Stroke, 2023, 54(4): 1037-1045.
17
Uchida Y, Kan H, Inoue H, et al. Penumbra detection with oxygen extraction fraction using magnetic susceptibility in patients with acute ischemic stroke [J]. Front Neurol, 2022, 13: 752450.
18
Wang X, Dou W, Dong D, et al. Can 3D pseudo-continuous territorial arterial spin labeling effectively diagnose patients with recanalization of unilateral middle cerebral artery stenosis? [J]. J Magn Reson Imaging, 2021, 54(1): 175-183.
19
Li Q, Jiang C, Qian L, et al. Prognostic value of multi-PLD ASL-based cerebral perfusion ASPECTS in acute ischemic stroke [J]. Front Neurol, 2024, 15: 1476937.
20
Jin D, Su X, Jin Y, et al. Diagnostic value of MRI perfusion-weighted imaging and diffusion-weighted imaging parameters in cerebral apoplexy [J]. Am J Transl Res, 2023, 15(2): 1097-1106.
21
Luijten SPR, Bos D, van Doormaal PJ, et al. Cerebral blood flow quantification with multi-delay arterial spin labeling in ischemic stroke and the association with early neurological outcome [J]. Neuroimage Clin, 2023, 37: 103340.
22
Hattori Y, Kakino Y, Nakaoku Y, et al. Cerebral hemodynamic severity of asymptomatic carotid artery stenosis/occlusion estimated by neurocognitive domains [J]. J Alzheimers Dis, 2025, 106(2): 589-604.
23
Kobayashi S, Hidaka S, Tanabe K. Cerebral blood flow following successful living kidney transplantation: the VINTAGE study [J]. Clin Kidney J, 2025, 18(1): sfae392.
24
Yin X, Yang W, Song L, et al. Abnormal neurovascular coupling exists in patients with peritoneal dialysis and hemodialysis: evidence from a multi-mode MRI study [J]. Clin Kidney J, 2025, 18(1): sfae353.
25
Paschoal AM, Leoni RF, Foerster BU, et al. Contrast optimization in arterial spin labeling with multiple post-labeling delays for cerebrovascular assessment [J]. MAGMA, 2021, 34(1): 119-131.
26
Setta K, Matsuda T, Sasaki M, et al. Diagnostic accuracy of screening arterial spin-labeling MRI using Hadamard encoding for the detection of reduced CBF in adult patients with ischemic moyamoya disease [J]. AJNR Am J Neuroradiol, 2021, 42(8): 1403-1409.
27
Pires Monteiro S, Pinto J, Chappell MA, et al. Brain perfusion imaging by multi-delay arterial spin labeling: Impact of modeling dispersion and interaction with denoising strategies and pathology [J]. Magn Reson Med, 2023, 90(5): 1889-1904.
28
Luciw NJ, Shirzadi Z, Black SE, et al. Automated generation of cerebral blood flow and arterial transit time maps from multiple delay arterial spin-labeled MRI [J]. Magn Reson Med, 2022, 88(1): 406-417.
29
Sun J, Wang H, Wang YL. Evaluating ocular blood flow in diabetic macular edema using three-dimensional pseudocontinuous arterial spin labeling [J]. Curr Med Imaging, 2024, 20: e15734056307305.
30
Adebimpe A, Bertolero M, Dolui S, et al. ASL Prep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion [J]. Nat Methods, 2022, 19(6): 683-686.
31
Verner E, Petropoulos H, Baker B, et al. BrainForge: an online data analysis platform for integrative neuroimaging acquisition, analysis, and sharing [J]. Concurr Comput, 2023, 35(18): e6855.
32
Li Y, Wang Z. Deeply accelerated arterial spin labeling perfusion MRI for measuring cerebral blood flow and arterial transit time [J]. IEEE J Biomed Health Inform, 2023, 27(12): 5937-5945.
33
Caffarelli M, Simmons R, Tolokh I, et al. A quantitative electroencephalographic index for stroke detection in adults [J]. J Clin Neurophysiol, 2025, 5: 10.
34
Wang Z. Arterial spin labeling perfusion MRI signal processing through traditional methods and machine learning [J]. Investig Magn Reson Imaging, 2022, 26(4): 220-228.
35
Tapper S, Tisell A, Hillman J, et al. Method for detection of cerebral blood flow in neurointensive care using longitudinal arterial spin labeling MRI [J]. PLoS One, 2024, 19(11): e0314056.
36
Mutsaerts HJMM, Petr J, Groot P, et al. ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies [J]. Neuroimage, 2020, 219: 117031.
37
Cohen AD, Moia S, Pike GB, et al. Resting state BOLD-perfusion coupling patterns using multiband multi-echo pseudo-continuous arterial spin label imaging [J]. Sci Rep, 2025, 15(1): 2108.
38
Wang X, Wang L, Wu Y, et al. Intracerebral hemodynamic abnormalities in patients with Parkinson's disease: comparison between multi-delay arterial spin labelling and conventional single-delay arterial spin labelling [J]. Diagn Interv Imaging, 2024, 105(7-8): 281-291.
39
Xu X, Tan Z, Fan M, et al. Comparative study of multi-delay pseudo-continuous arterial spin labeling perfusion MRI and CT perfusion in ischemic stroke disease [J]. Front Neuroinform, 2021, 15: 719719.
40
Thropp P, Phillips E, Jung Y, et al. Arterial spin labeling perfusion MRI in the Alzheimer's disease neuroimaging initiative: past, present, and future [J]. Alzheimers Dement, 2024, 20(12): 8937-8952.
41
Xu F, Xu C, Zhu D, et al. Evaluating cerebrovascular reactivity measured by velocity selective inversion arterial spin labeling with different post-labeling delays: the effect of fast flow [J]. Magn Reson Med, 2024, 92(5): 2065-2073.
42
Batail JM, Corouge I, Combès B, et al. Apathy in depression: an arterial spin labeling perfusion MRI study [J]. J Psychiatr Res, 2023, 157: 7-16.
43
卓丽华, 唐春耕, 周明, 等. 1H-磁共振波普成像联合弥散加权成像、3D-动脉内源性标记对急性脑梗死缺血半暗带的评估价值 [J/OL]. 中华临床医师杂志(电子版), 2019, 13(8): 596-602.
44
Huang Q, Wu J, Le N, et al. CEST2022: amide proton transfer-weighted MRI improves the diagnostic performance of multiparametric non-contrast-enhanced MRI techniques in patients with post-treatment high-grade gliomas [J]. Magn Reson Imaging, 2023, 102: 222-228.
45
Fischer M, Bartler A, Yang B. Prompt tuning for parameter-efficient medical image segmentation [J]. Med Image Anal, 2024, 91: 103024.
46
Mirbahai L, Noordali F, Nolan H. Designing an interdisciplinary health course: a qualitative study of undergraduate students' experience of interdisciplinary curriculum design and learning experiences [J]. J Med Educ Curric Dev, 2024, 11: 23821205241260488.
47
Bruno A. Pre-diabetes, diabetes, hyperglycemia, and stroke: bittersweet therapeutic opportunities [J]. Curr Neurol Neurosci Rep, 2022, 22(11): 781-787.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J/OL]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 韩秋霞, 朱晗玉, 段颖洁, 田明威, 朱凯怡, 马丽洁, 孙倩美. 维持性血液透析患者单核细胞/高密度脂蛋白胆固醇比值和血小板/高密度脂蛋白胆固醇比值与脑卒中风险的相关性[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 140-145.
[3] 王晓丽, 王晓媛, 孙洪涛. 老年急性缺血性脑卒中伴房颤患者预后的影响因素分析[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 111-116.
[4] 李刚, 潘晓帆, 田雪, 刘路路. CT灌注成像参数及血栓弹力图对急性前循环脑梗死早期神经功能恶化的预测价值分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 226-232.
[5] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[6] 刘佳成, 许晓辉, 杜艳姣, 张云亭, 段智慧. 载脂蛋白E基因多态性对急性缺血性脑卒中后抑郁的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 220-226.
[7] 吉莉, 苏云楠, 王斌, 沈滔, 刘团结, 毛蕾, 徐玉萍, 张婷, 王博. 急性缺血性脑卒中患者脑白质微结构改变对长期认知功能损伤的预测价值研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 193-200.
[8] 马丽. CT灌注联合血管成像预测急性脑梗死患者近期神经功能预后的价值分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 229-234.
[9] 侯志博, 李秋璇, 逯瑶, 张苗, 於帆, 卢洁. 多延迟动脉自旋标记成像与CT灌注成像在急性缺血性脑卒中的应用研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1090-1096.
[10] 尹晓晴, 赵子萱, 杨帆, 敖峰, 林勇. D型人格与前循环急性缺血性脑卒中患者预后的相关性[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 206-211.
[11] 王增龙, 顾梅, 杭宇, 刘圣, 施海彬, 包建英. 急性大血管闭塞性脑卒中患者血管内治疗后吞咽障碍发生的危险因素分析[J/OL]. 中华介入放射学电子杂志, 2024, 12(01): 10-14.
[12] 张莉, 王汉祥. 急性缺血性脑卒中血压管理研究进展[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(03): 178-182.
[13] 丘燕娇, 陈莹, 吴振梅, 钟秋杰, 韩小妍, 李又佳, 罗宋宝, 韩倩倩. 脑心健康管理师介入的营养管理对老年急性缺血性脑卒中患者预后的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(04): 312-317.
[14] 李小勇, 郭海志, 赵洋. QSM 联合SWI 预测急性缺血性脑卒中患者EVT 后神经功能的价值[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 549-555.
[15] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?