切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 461 -466. doi: 10.3877/cma.j.issn.1674-0785.2025.06.010

综述

脓毒症心肌病的研究进展:基础、临床与展望
宁雯琪, 张永利()   
  1. 116011 辽宁 大连,大连医科大学附属第一医院重症医学科
  • 收稿日期:2025-06-05 出版日期:2025-06-30
  • 通信作者: 张永利
  • 基金资助:
    大连市医学科学研究计划项目(2023DF003)

Septic cardiomyopathy: from pathophysiology to clinical advances

Wenqi Ning, Yongli Zhang()   

  1. Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
  • Received:2025-06-05 Published:2025-06-30
  • Corresponding author: Yongli Zhang
引用本文:

宁雯琪, 张永利. 脓毒症心肌病的研究进展:基础、临床与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 461-466.

Wenqi Ning, Yongli Zhang. Septic cardiomyopathy: from pathophysiology to clinical advances[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(06): 461-466.

脓毒症心肌病是一种由脓毒症引起的可逆性心肌损伤,该病显著增加了脓毒症患者的病死率。其病理生理机制复杂,涉及细胞因子异常、心肌细胞损伤或死亡、线粒体功能障碍、钙离子稳态失常以及一氧化氮的异常等多种因素。脓毒症心肌病作为一种复杂的临床综合征,其治疗策略需综合考虑上述病理生理机制,采取多维度的治疗措施。随着研究的深入和临床经验的积累,脓毒症心肌病的诊断和治疗水平有望得到进一步提升,从而降低脓毒症患者的病死率。本文旨在从脓毒症心肌病的病理生理机制、临床特征、诊断方法及治疗策略的研究进展进行综述。

Septic cardiomyopathy is a form of reversible myocardial injury caused by sepsis, contributing significantly to the mortality associated with sepsis. The pathophysiological mechanisms underlying septic cardiomyopathy are intricate, involving a multitude of factors such as cytokine release, myocardial cell injury or death, mitochondrial dysfunction, disrupted calcium homeostasis, and abnormal nitric oxide synthesis. As a complex clinical syndrome, the management of septic cardiomyopathy requires a thorough understanding of these pathophysiological processes and the application of multifaceted therapeutic strategies. With ongoing research advancements and the accumulation of clinical insights, enhancements in the diagnosis and treatment of septic cardiomyopathy are expected, potentially leading to a decrease in sepsis-related mortality. This article aims to review the current research developments regarding the pathophysiological mechanisms, clinical presentations, diagnostic approaches, and therapeutic interventions for septic cardiomyopathy.

1
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. Jama, 2016, 315(8): 801-810.
2
Beesley SJ, Weber G, Sarge T, et al. Septic cardiomyopathy [J]. Crit Care Med, 2018, 46(4): 625-634.
3
Hasegawa D, Ishisaka Y, Maeda T, et al. Prevalence and prognosis of sepsis-induced cardiomyopathy: a systematic review and meta-analysis [J]. J Intensive Care Med, 2023, 38(9): 797-808.
4
Chen L, Tian Q, Shi Z, et al. Melatonin alleviates cardiac function in sepsis-caused myocarditis via maintenance of mitochondrial function [J]. Front Nutr, 2021, 8: 754235.
5
Hanumanthu BKJ, Nair AS, Katamreddy A, et al. Sepsis-induced cardiomyopathy is associated with higher mortality rates in patients with sepsis [J]. Acute Crit Care, 2021, 36(3): 215-222.
6
Habimana R, Choi I, Cho HJ, et al. Sepsis-induced cardiac dysfunction: a review of pathophysiology [J]. Acute Crit Care, 2020, 35(2): 57-66.
7
Ouyang M, Ouyang X, Peng Z, et al. Heart-targeted amelioration of sepsis-induced myocardial dysfunction by microenvironment responsive nitric oxide nanogenerators in situ [J]. J Nanobiotechnology, 2022, 20(1): 263.
8
Su Z, Gao M, Weng L, et al. Esculin targets TLR4 to protect against LPS-induced septic cardiomyopathy [J]. Int Immunopharmacol, 2024, 131: 111897.
9
Antonucci E, Fiaccadori E, Donadello K, et al. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment [J]. J Crit Care, 2014, 29(4): 500-511.
10
Chen YH, Teng X, Hu ZJ, et al. Hydrogen sulfide attenuated sepsis-induced myocardial dysfunction through TLR4 pathway and endoplasmic reticulum stress [J]. Front Physiol, 2021, 12: 653601.
11
Zhang G, Dong D, Wan X, et al. Cardiomyocyte death in sepsis: mechanisms and regulation (Review) [J]. Mol Med Rep, 2022, 26(2): 257.
12
Nössing C, Ryan KM. 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics' [J]. Br J Cancer, 2023, 128(3): 426-431.
13
Zechendorf E, O'Riordan CE, Stiehler L, et al. Ribonuclease 1 attenuates septic cardiomyopathy and cardiac apoptosis in a murine model of polymicrobial sepsis [J]. JCI Insight, 2020, 5(8): e131571.
14
Kuroshima T, Kawaguchi S, Okada M. Current perspectives of mitochondria in sepsis-induced cardiomyopathy [J]. Int J Mol Sci, 2024, 25(9): 4710.
15
Preau S, Delguste F, Yu Y, et al. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy [J]. Antioxid Redox Signal, 2016, 24(10): 529-542.
16
Ye H, Hu H, Zhou X, et al. Targeting ferroptosis in the maintenance of mitochondrial homeostasis in the realm of septic cardiomyopathy [J]. Curr Opin Pharmacol, 2024, 74: 102430.
17
Xl L, Gy Z, R G, N C. Ferroptosis in sepsis: the mechanism, the role and the therapeutic potential. Front Immunol. 2022 Aug 5: 13: 956361.
18
Han X, Zhang J, Liu J, et al. Targeting ferroptosis: a novel insight against myocardial infarction and ischemia-reperfusion injuries [J]. Apoptosis, 2023, 28(1-2): 108-123.
19
Fefelova N, Wongjaikam S, Pamarthi SH, et al. Deficiency of mitochondrial calcium uniporter abrogates iron overload-induced cardiac dysfunction by reducing ferroptosis [J]. Basic Res Cardiol, 2023, 118(1): 21.
20
Zhu XX, Meng XY, Zhang AY, et al. Vaccarin alleviates septic cardiomyopathy by potentiating NLRP3 palmitoylation and inactivation [J]. Phytomedicine, 2024, 131: 155771.
21
Yang Z, Pan X, Wu X, et al. TREM-1 induces pyroptosis in cardiomyocytes by activating NLRP3 inflammasome through the SMC4/NEMO pathway [J]. FEBS J, 2023, 290(6): 1549-1562.
22
Liu B, Wang Z, He R, et al. Buformin alleviates sepsis-induced acute lung injury via inhibiting NLRP3-mediated pyroptosis through an AMPK-dependent pathway [J]. Clin Sci (Lond), 2022, 136(4): 273-289.
23
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation [J]. Nature, 2015, 517(7534): 311-320.
24
Yu S, Yang H, Guo X, et al. Klotho attenuates angiotensin II‑induced cardiotoxicity through suppression of necroptosis and oxidative stress [J]. Mol Med Rep, 2021, 23(1): 66.
25
Du Y, Zhong Y, Ding R, et al. New insights of necroptosis and immune infiltration in sepsis-induced myocardial dysfunction from bioinformatics analysis through RNA-seq in mice [J]. Front Cell Infect Microbiol, 2022, 12: 1068324.
26
Lin H, Wang W, Lee M, et al. Current status of septic cardiomyopathy: basic science and clinical progress [J]. Front Pharmacol, 2020, 11: 210.
27
Chen M, Guan Y, Li A, et al. LncRNA Sox2ot mediates mitochondrial dysfunction in septic cardiomyopathy [J]. DNA Cell Biol, 2019, 38(11): 1197-1206.
28
Lo Verso F, Carnio S, Vainshtein A, et al. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity [J]. Autophagy, 2014, 10(11): 1883-1894.
29
Ott M, Gogvadze V, Orrenius S, et al. Mitochondria, oxidative stress and cell death [J]. Apoptosis, 2007, 12(5): 913-922.
30
Wen Y, Liu Y, Liu W, et al. Research progress on the activation mechanism of NLRP3 inflammasome in septic cardiomyopathy [J]. Immun Inflamm Dis, 2023, 11(10): e1039.
31
Power AS, Asamudo EU, Worthington LPI, et al. Nitric oxide modulates Ca2+ leak and arrhythmias via S-nitrosylation of CaMKII [J]. Circ Res, 2023, 133(12): 1040-1055.
32
Martin L, Derwall M, Al Zoubi S, et al. The septic heart: current understanding of molecular mechanisms and clinical implications [J]. Chest, 2019, 155(2): 427-437.
33
Preiser JC, Zhang H, Vray B, et al. Time course of inducible nitric oxide synthase activity following endotoxin administration in dogs [J]. Nitric Oxide, 2001, 5(2): 208-211.
34
Salami OM, Habimana O, Peng JF, et al. Therapeutic strategies targeting mitochondrial dysfunction in sepsis-induced cardiomyopathy [J]. Cardiovasc Drugs Ther, 2024, 38(1): 163-180.
35
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 [J]. Intensive Care Med, 2021, 47(11): 1181-1247.
36
中国中西医结合学会重症医学专业委员会, 中国医师协会中西医结合医师分会心脏介入专业委员会. 脓毒性心肌病中西医结合诊治专家共识 [J]. 中国中西医结合急救杂志, 2022, 29(1): 1-6.
37
Bosch NA, Cohen DM, Walkey AJ. Risk factors for new-onset atrial fibrillation in patients with sepsis: a systematic review and meta-analysis [J]. Crit Care Med, 2019, 47(2): 280-287.
38
Cai F, Li D, Xie Y, et al. Sulfide: quinone oxidoreductase alleviates ferroptosis in acute kidney injury via ameliorating mitochondrial dysfunction of renal tubular epithelial cells [J]. Redox Biol, 2024, 69: 102973.
39
Maeder M, Fehr T, Rickli H, et al. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides [J]. Chest, 2006, 129(5): 1349-1366.
40
L'Heureux M, Sternberg M, Brath L, et al. Sepsis-induced cardiomyopathy: a comprehensive review [J]. Curr Cardiol Rep, 2020, 22(5): 35.
41
Manetti AC, Maiese A, Paolo MD, et al. MicroRNAs and sepsis-Iinduced cardiac dysfunction: a systematic review [J]. Int J Mol Sci, 2020, 22(1): 321.
42
Zhang P, Yi L, Qu S, et al. The biomarker TCONS_00016233 drives septic AKI by targeting the miR-22-3p/AIFM1 signaling axis [J]. Mol Ther Nucleic Acids, 2020, 19: 1027-1042.
43
Wang J, Ma X, Si X, et al. Sweroside functionalized with Mesenchymal Stem cells derived exosomes attenuates sepsis-induced myocardial injury by modulating oxidative stress and apoptosis in rats [J]. J Biomater Appl, 2023, 38(3): 381-391.
44
张斌, 陈磊, 季镇新, 等. 脓毒症心肌病患者外周血内皮细胞来源细胞外囊泡的表达及意义 [J]. 实用临床医药杂志, 2025, 29(5): 112-116, 121.
45
Guo H, Tang L, Xu J, et al. MicroRNA-495 serves as a diagnostic biomarker in patients with sepsis and regulates sepsis-induced inflammation and cardiac dysfunction [J]. Eur J Med Res, 2019, 24(1): 37.
46
Halkein J, Tabruyn SP, Ricke-Hoch M, et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy [J]. J Clin Invest, 2013, 123(5): 2143-2154.
47
Muehlberg F, Blaszczyk E, Will K, et al. Characterization of critically ill patients with septic shock and sepsis-associated cardiomyopathy using cardiovascular MRI [J]. ESC Heart Fail, 2022, 9(4): 2147-2156.
48
Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock [J]. Ann Intern Med, 1984, 100(4): 483-490.
49
Lu NF, Niu HX, Liu AQ, et al. Types of septic cardiomyopathy: prognosis and influencing factors - a clinical study [J]. Risk Manag Healthc Policy, 2024, 17: 1015-1025.
50
Huang SJ, Ting I, Huang AM, et al. Longitudinal wall fractional shortening: an M-mode index based on mitral annular plane systolic excursion (MAPSE) that correlates and predicts left ventricular longitudinal strain (LVLS) in intensive care patients [J]. Crit Care, 2017, 21(1): 292.
51
Carbone F, Liberale L, Preda A, et al. Septic cardiomyopathy: from pathophysiology to the clinical setting [J]. Cells, 2022, 11(18): 2833.
52
林欢, 任宏生. 超声心动图在脓毒症心肌病中的应用进展 [J]. 中国临床研究, 2024, 37(11): 1665-1668, 1673.
53
Velagapudi VM, Pidikiti R, Tighe DA. Is Left ventricular global longitudinal strain by two-dimensional speckle tracking echocardiography in sepsis cardiomyopathy ready for prime time use in the ICU? [J]. Healthcare (Basel), 2019, 7(1): 5.
54
Tsolaki V, Zakynthinos GE, Papanikolaou J, et al. Levosimendan in the treatment of patients with severe septic cardiomyopathy [J]. Life (Basel), 2023, 13(6): 1346.
55
Ge Z, Gao Y, Lu X, et al. The association between levosimendan and mortality in patients with sepsis or septic shock: a systematic review and meta-analysis [J]. Eur J Emerg Med, 2024, 31(2): 90-97.
56
Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021: Erratum [J]. Crit Care Med, 2022, 50(4): e413-e414.
57
Kawaguchi S, Okada M, Ijiri E, et al. β3-Adrenergic receptor blockade reduces mortality in endotoxin-induced heart failure by suppressing induced nitric oxide synthase and saving cardiac metabolism [J]. Am J Physiol Heart Circ Physiol, 2020, 318(2): H283-H294.
58
Wu BB, Leung KT, Poon EN. Mitochondrial-targeted therapy for doxorubicin-induced cardiotoxicity [J]. Int J Mol Sci, 2022, 23(3): 1912.
59
Wu M, Li G, Wang W, et al. Emerging roles of microRNAs in septic cardiomyopathy [J]. Front Pharmacol, 2023, 14: 1181372.
60
Li J, Xiao F, Lin B, et al. Ferrostatin-1 improves acute sepsis-induced cardiomyopathy via inhibiting neutrophil infiltration through impaired chemokine axis [J]. Front Cell Dev Biol, 2024, 12: 1510232.
61
Bréchot N, Hajage D, Kimmoun A, et al. Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: a retrospective, multicentre, international cohort study [J]. Lancet, 2020, 396(10250): 545-552.
62
Falk L, Hultman J, Broman LM. Extracorporeal membrane oxygenation for septic shock [J]. Crit Care Med, 2019, 47(8): 1097-1105.
63
Kuroki T, Abe T, Kawana R, et al. Successful treatment of sepsis-induced cardiomyopathy with intra-aortic balloon pumping: a case report and literature review [J]. Am J Case Rep, 2023, 24: e941098.
[1] 刘畅, 蒋洁, 胥雪冬, 崔立刚, 张睿超, 王淑敏, 陈文. 甲状腺规范化扫查及C-TIRADS 分类在二级和一级医疗机构的推广应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 402-407.
[2] 王彦, 张晓航, 冉素真, 钟春燕, 张晋炜, 王希. 双胎贫血-红细胞增多序列征的产前超声特征分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 462-469.
[3] 高加勒, 张忠涛. 结直肠癌外科领域最新进展与热点[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 595-599.
[4] 钱龙, 蔡大明, 王行舟, 艾世超, 胡琼源, 孙锋, 宋鹏, 王峰, 王萌, 陆晓峰, 朱欢欢, 沈晓菲, 管文贤. 局部不可切除胃癌转化治疗(联合免疫治疗)后淋巴结转移的相关危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 624-627.
[5] 薛兆强, 袁寅. 双镜联合保功能胃癌根治术治疗早期近端胃癌的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 628-632.
[6] 王思竣, 王琼, 李珂雨, 袁新普, 张硕珉, 马睿, 谢天宇, 张朝军. 胃上部癌新辅助化疗联合免疫治疗后实施近端胃切除术的临床疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 637-641.
[7] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[8] 吴少锋, 王茂, 马海龙, 史英, 代引海. 新辅助治疗后肿瘤退缩分级对局部进展期直肠癌患者全直肠系膜切除术效果的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 535-538.
[9] 徐其银, 韩尚志. 术前结合术后营养支持对直肠癌患者康复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 543-546.
[10] 吴菲, 袁媛, 何凡, 杜秋丽, 窦婷, 阮剑. 超声定位下冷循环射频消融术治疗甲状腺良性结节的疗效及预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 562-565.
[11] 高峰, 郝少龙, 孙浩, 韩威. 三级淋巴结构在胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 570-573.
[12] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[13] 胡铭语, 李敬东, 肖雨竹, 黄杰. 初始不可切除肝癌患者转化治疗序贯手术的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 754-760.
[14] 周继升, 李丹, 米琳, 韩江莉. 急性冠脉综合征合并对比剂禁忌患者血管内超声指导零对比剂冠状动脉介入治疗的安全性和有效性[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 408-413.
[15] 卫星彤, 李昊昌, 赵欣. 超声造影在鉴别诊断原发性肝癌类型上的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 392-396.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?