切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (07) : 544 -549. doi: 10.3877/cma.j.issn.1674-0785.2025.07.010

综述

巨噬细胞在糖尿病肾病中作用及治疗药物
赵志琪, 吴晓丽, 刘若琪, 曲卓敏, 李董冉, 赵凌霞()   
  1. 030032 太原,山西医科大学第三医院 山西白求恩医院(山西医学科学院) 同济山西医院内分泌科
  • 收稿日期:2025-07-29 出版日期:2025-07-30
  • 通信作者: 赵凌霞
  • 基金资助:
    山西省自然科学基金项目(20210302122435)

From mechanisms to therapeutics: The role of macrophages in diabetic nephropathy

Zhiqi Zhao, Xiaoli Wu, Ruoqi Liu, Zhuomin Qu, Dongran Li, Lingxia Zhao()   

  1. Department of Endocrinology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Acodemy of Medical Siciences, Tongji Shanxi Hospital, Taiyuan 030032, China
  • Received:2025-07-29 Published:2025-07-30
  • Corresponding author: Lingxia Zhao
引用本文:

赵志琪, 吴晓丽, 刘若琪, 曲卓敏, 李董冉, 赵凌霞. 巨噬细胞在糖尿病肾病中作用及治疗药物[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 544-549.

Zhiqi Zhao, Xiaoli Wu, Ruoqi Liu, Zhuomin Qu, Dongran Li, Lingxia Zhao. From mechanisms to therapeutics: The role of macrophages in diabetic nephropathy[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(07): 544-549.

糖尿病肾病正在成为慢性肾脏疾病的主要原因。尽管越来越多的证据表明免疫和炎症高度参与在糖尿病肾病的发病机制和进展中,但其潜在机制仍不完全清楚。本文综述主要总结了巨噬细胞相关表型变化,重点介绍了巨噬细胞以及其与肾脏固有细胞间相互作用,进一步探究巨噬细胞在糖尿病肾病发生发展过程中的作用机制,并为糖尿病肾病治疗方法和治疗药物的开发提供了新的思路。

Diabetic nephropathy is becoming the main cause of chronic kidney disease. Although more and more evidence indicates that immunity and inflammation are highly involved in the pathogenesis and progression of diabetic nephropathy, the underlying mechanisms remain unclear. This review mainly summarizes the phenotypic changes of macrophages, focuses on the interaction between macrophages and intrinsic renal cells, further explores the mechanism of macrophages in the occurrence and development of diabetic nephropathy, and provides new ideas for the development of treatment methods and drugs for diabetic nephropathy.

1
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119.
2
Maiti AK. Development of biomarkers and molecular therapy based on inflammatory genes in diabetic nephropathy[J]. Int J Mol Sci, 2021, 22(18): 9985.
3
李雅, 王志斌, 刘玮晔, 等. 巨噬细胞与糖尿病肾病[J]. 国际内分泌代谢杂志, 2014, 34(6): 393-396.
4
Luo M, Zhao F, Cheng H, et al. Macrophage polarization: an important role in inflammatory diseases[J]. Front Immunol, 2024, 15: 1352946.
5
杨建环, 王德选, 陈敏广,等. 巨噬细胞移动抑制因子对肾系膜细胞增殖的影响[J]. 中国卫生检验杂志, 2018, 28(1): 58-60.
6
李凡, 王杰, 衣春光, 等. 巨噬细胞募集与极化在糖尿病肾病中的作用机制及中药干预研究进展[J]. 中成药, 2024, 46(12): 4075-4082.
7
苏燚, 宋科. 黄芪甲苷通过调控HIF-1α信号通路调节M2巨噬细胞极化对糖尿病肾病的作用机制研究[J]. 中国比较医学杂志, 2025, 35(7): 25-35.
8
覃好, 朱诗平, 董文豪, 等. 巨噬细胞在糖尿病肾病足细胞凋亡中的作用[J]. 生命的化学, 2023, 43(3): 383-388.
9
Zhang Y, Le X, Zheng S, et al. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization[J]. Stem Cell Res Ther, 2022, 13(1): 171.
10
张德鱼, 于磊, 刘艾芹. 活性维生素D通过STAT-1-TREM-1途径调控M1/M2巨噬细胞表型激活失衡缓解糖尿病肾病中的肾间质纤维化的机制[J]. 临床和实验医学杂志, 2022, 21(15): 1580-1584.
11
杨莉, 李晓玫, 王荣, 等. 单核巨噬细胞对肾小管上皮细胞的活化作用及其机制初探[J]. 中国病理生理杂志, 2002, 18(10): 1217-1221.
12
Yin Q, Tang TT, Lu XY, et al. Macrophage-derived exosomes promote telomerefragility and senescence in tubular epithelial cells by delivering miR-155[J]. Cell Commun Signal, 2024, 22(1): 357.
13
Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J]. Cell Death Differ, 2020, 27(1): 210-226.
14
Jiang WJ, Xu CT, Du CL, et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy[J]. Theranostics, 2022, 12(1): 324-339.
15
闫红茹. KLF4调控巨噬细胞极化对肾小管间质炎症和纤维化的影响及机制研究 [D]. 南京: 东南大学, 2023.
16
Liu JL, Zhang L, Huang Y, et al. Epsin1-mediated exosomal sorting of Dll4 modulates the tubular-macrophage crosstalk in diabetic nephropathy [J]. Mol Ther, 2023, 31(5): 1451-1467.
17
Guo Y, Song Z, Zhou M, et al. Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway[J]. Oncotarget, 2017, 8(32): 53276-53287.
18
Yang H, Xie T, Li D, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway[J]. Mol Metab, 2019, 23: 24-36.
19
Ji L, Chen Y, Wang H, et al. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy[J]. Int J Oncol, 2019, 55(1): 103-115.
20
Ren J, Xu Y, Lu X, et al. Twist1 in podocytes ameliorates podocyte injury and proteinuria by limiting CCL2-dependent macrophage infiltration[J]. JCI Insight, 2021, 6(15): e148109.
21
Shankland SJ, Hugo C, Coats SR, et al. Changes in cell-cycle protein expression during experimental mesangial proliferative glomerulonephritis[J]. Kidney Int, 1996, 50(4): 1230-1239.
22
Zhu Q, Zhu M, Xu X, et al. Exosomes from high glucose–treated macrophages activate glomerular mesangial cells via TGF‐β1/Smad3 pathway in vivo and in vitro[J]. FASEB J, 2019, 33(8): 9279-9290.
23
Liu Y, Li X, Zhao M, et al. Macrophage-derived exosomes promote activation of NLRP3 inflammasome and autophagy deficiency of mesangial cells in diabetic nephropathy[J]. Life Sci, 2023, 330: 121991.
24
鲁盈, 杨汝春. OX-LDL诱导活化巨噬细胞对肾小球系膜细胞的损伤及水蛭素的干预 [C]//中华中医药学会中医药学术发展大会论文集, 2005: 708-709.
25
Rohm TV, Castellani Gomes Dos Reis F, Isaac R, et al. Adipose tissue macrophages secrete small extracellular vesicles that mediate rosiglitazone-induced insulin sensitization [J]. Nat Metab, 2024, 6(5): 880-898.
26
Zhang C, Zhang Y, Zhang C, et al. Pioglitazone increases VEGFR3 expression and promotes activation of M2 macrophages via the peroxisome proliferator-activated receptor γ[J]. Mol Med Rep, 2019, 19(4): 2740-2748.
27
Liu H, Duan C, Yang X, et al. Metformin suppresses calcium oxalate crystal-induced kidney injury by promoting Sirt1 and M2 macrophage-mediated anti-inflammatory activation[J]. Signal Transduct Target Ther, 2023, 8(1): 38.
28
Bendotti G, Montefusco L, Lunati ME, et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists[J]. Pharmacol Res, 2022, 182: 106320.
29
Yuan Y, Sun M, Jin Z, et al. Dapagliflozin ameliorates diabetic renal injury through suppressing the self-perpetuating cycle of inflammation mediated by HMGB1 feedback signaling in the kidney[J]. Eur J Pharmacol, 2023, 943: 175560.
30
Xu L, Nagata N, Nagashimada M, et al. SGLT2 Inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice[J]. EBioMedicine, 2017, 20: 137-149.
31
Kim YJ, Jin J, Kim DH, et al. SGLT2 inhibitors prevent LPS-induced M1 macrophage polarization and alleviate inflammatory bowel disease by downregulating NHE1 expression[J]. Inflamm Res, 2023, 72(10-11): 1981-1997.
32
Xu L, Nagata N, Chen G, et al. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet[J]. BMJ Open Diabetes Res Care, 2019, 7(1): e000783.
33
Barrera-Chimal J, Estrela GR, Lechner SM, et al. The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling [J]. Kidney Inte, 2018, 93(6): 1344-1355.
34
Yu W, Wang H, Ren X, et al. Experimental study of leflunomide on renal protective effect and on inflammatory response of streptozotocin induced diabetic rats[J]. Nephrology, 2012, 17(4): 380-389.
35
Jianbin X, Peng D, Jing Z, et al. (5R)-5-hydroxytriptolide ameliorates diabetic kidney damage by inhibiting macrophage infiltration and its cross-talk with renal resident cells[J]. Int Immunopharmacol, 2024, 126: 111253.
36
Wu Y, Wang Y, Qi X, et al. Increased Macrophage Activation Inhibited by Tacrolimus in the Kidney of Diabetic Rats[J]. Nephron Exp Nephrol, 2014, 128(1-2): 46-56.
37
Seo JW, Kim YG, Lee SH, et al. Mycophenolate mofetil ameliorates diabetic nephropathy in db/db mice[J]. BioMed Res Int, 2015, 2015: 1-11.
38
Zhang C, Zhang Y, Zhang C, et al. Pioglitazone increases VEGFR3 expression andpromotes activation of M2 macrophages via the peroxisome proliferator-activated receptor γ[J]. Mol Med Rep, 2019, 124(6): 389-398.
39
Czopek A, Moorhouse R, Gallacher PJ, et al. Endothelin blockade prevents the long-term cardiovascular and renal sequelae of acute kidney injury in mice[J]. Sci Transl Med, 2022, 14(675): eabf5074.
40
Zhang XL, Guo YF, Song ZX, et al. Vitamin D prevents podocyte injury via regulation of macrophage M1/M2 phenotype in diabetic nephropathy rats[J]. Endocrinology, 2014, 155(12): 4939-4950.
41
Zhang X, Zhao Y, Zhu X, et al. Active vitamin D regulates macrophage M1/M2 phenotypes via the STAT‐1‐TREM‐1 pathway in diabetic nephropathy[J]. J Cell Physiol, 2019, 234(5): 6917-6926.
42
Tang S, Tan J, Yang S, et al. Paricalcitol ameliorates diabetic nephropathy by promoting EETs and M2 macrophage polarization and inhibiting inflammation by regulating VDR/CYP2J2 axis[J]. FASEB J, 2024, 38(20): e70108.
43
Lee WJ, Liu SH, Chiang CK, et al. Aryl hydrocarbon receptor deficiency attenuates oxidative stress-related mesangial cell activation and macrophage infiltration and extracellular matrix accumulation in diabetic nephropathy[J]. Antioxid Redox Signal, 2016, 24(4): 217-231.
44
Du Q, Fu YX, Shu AM, et al. Loganin alleviates macrophage infiltration and activation by inhibiting the MCP-1/CCR2 axis in diabetic nephropathy[J]. Life Sciences, 2021, 272: 118808.
45
浦强, 徐巍龙, 李楠, 等. 黄葵素抑制巨噬细胞浸润和活化改善db/db小鼠肾纤维化实验研究[J]. 天然产物研究与开发, 2019, 31(11): 1887-1895.
46
罗先荣, 彭家清, 熊燕, 等. 积雪草酸对糖尿病肾病大鼠肾功能及巨噬细胞表面活化标志物水平的影响[J]. 临床与病理杂志, 2019, 39(5): 920-927.
47
陈璟, 杨小艺, 陈静, 等. 银杏叶提取物对糖尿病肾病模型小鼠肾脏炎症的抑制作用及机制[J]. 中国药房, 2024, 35(2): 186-191.
48
胡相卡, 刘作栋, 赵苗鑫, 等. EGCG对糖尿病大鼠肾脏的保护作用及机制研究[J]. 石河子大学学报(自然科学版), 2022, 40(2): 251-258.
49
Liu J, Zhang Y, Sheng H, et al. Hyperoside suppresses renal inflammation by regulating macrophage polarization in mice with type 2 diabetes mellitus[J]. Front Immunol 2021, 12: 733808.
50
Cao Y, Xiong J, Guan X, et al. Paeoniflorin suppresses kidney inflammation by regulating macrophage polarization via KLF4-mediated mitophagy[J]. Phytomedicine, 2023, 116: 154901.
[1] 张兆坤, 赵俊杰, 黄鹏飞, 王玺玉, 赵宇昊, 赵海燕. 微循环对巨噬细胞影响在激素性股骨头坏死机制探究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 336-342.
[2] 张霞, 冯娅娆, 罗寰, 杨金良, 张斌, 郑学军. 尪痹胶囊联合来氟米特对类风湿关节炎炎症指标的影响[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 55-64.
[3] 鲁嘉懿, 唐菲, 卢芬, 陶于洪. 儿童系统性红斑狼疮相关性急性胰腺炎的临床诊疗及预后分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(06): 635-643.
[4] 黄洲龙, 张金丽, 周日兴, 于昊, 张志. 巨噬细胞向肌成纤维细胞转分化在纤维化疾病中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 271-275.
[5] 陈浩, 林梁, 邹来宾, 郭胜蓝. 成石饮食诱发胆结石及肝损伤机制的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 42-47.
[6] 孟竹达, 靳亚杰, 郝冉, 赵二鹏. MMIF与围手术期指标预测甲状腺全切术后甲状旁腺功能减退的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 678-681.
[7] 刘洪千, 马琦, 陈娟娟, 王成军, 武玲玲, 冯喜英. miR-150-5p 在青海地区结核分枝杆菌感染患者血清中的表达及意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 42-47.
[8] 张天麒, 宾晓芸. 阿托伐他汀对高脂饮食诱导的新西兰兔代谢功能障碍相关脂肪性肝病中巨噬细胞极化的作用及机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 167-178.
[9] 曾锐. 抑制急性肾损伤向慢性肾脏病转化:靶向致病性肾脏巨噬细胞纳米药物的应用[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 241-247.
[10] 朱蓉蓉, 王俭勤. 通过调控内质网应激信号通路治疗糖尿病肾病的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 104-109.
[11] 俞若婷, 高威, 刘宇浩, 刘琛. 肺挫伤病理生理机制及相关治疗研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 536-543.
[12] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
[13] 张笑闻, 李菁, 管生, 范梦妍, Mateus TN Mach, 万佳鑫, 林日金, 刘爱华, 王蕾, 张志科. 脑动脉瘤光学相干断层扫描表现二例[J/OL]. 中华介入放射学电子杂志, 2025, 13(01): 93-96.
[14] 曹琪, 罗治文, 车云. CD68蛋白可预测ⅠB期肺鳞癌术后复发风险[J/OL]. 中华胸部外科电子杂志, 2025, 12(03): 144-151.
[15] 冯欣, 尤素伟, 史晓梅, 王相斌, 巩巧丽, 王俊英. 血清VEGF-A、HIF-1α、MIF水平与急性脑梗死并发脑心综合征的关联性研究[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 213-219.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?