切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (09) : 682 -688. doi: 10.3877/cma.j.issn.1674-0785.2025.09.007

临床研究

代谢相关脂肪性肝病患者发生冠心病的风险预测模型
郭岩, 赵灵芝, 石光英()   
  1. 830002 乌鲁木齐,新疆生产建设兵团医院感染科
  • 收稿日期:2025-09-11 出版日期:2025-09-30
  • 通信作者: 石光英
  • 基金资助:
    自治区“天山英才”医药卫生领军人才项目(兵卫函[2024]15号)

Development of a predictive model for risk of coronary heart disease in patients with metabolic-associated fatty liver disease

Yan Guo, Lingzhi Zhao, Guangying Shi()   

  1. Department of Hospital Infection Control, Xinjiang Production and Construction Corps Hospital, Urumqi 830002, China
  • Received:2025-09-11 Published:2025-09-30
  • Corresponding author: Guangying Shi
引用本文:

郭岩, 赵灵芝, 石光英. 代谢相关脂肪性肝病患者发生冠心病的风险预测模型[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 682-688.

Yan Guo, Lingzhi Zhao, Guangying Shi. Development of a predictive model for risk of coronary heart disease in patients with metabolic-associated fatty liver disease[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(09): 682-688.

目的

整合多系统代谢指标,结合临床研究数据,建立代谢相关脂肪性肝病并发冠心病的预测模型。

方法

选取2020年1月至2025年1月间在新疆生产建设兵团医院确诊的代谢相关脂肪性肝病(MAFLD)患者共1251例。根据是否合并冠心病分为冠心病组(190例)和非冠心病组(1061例)。对临床常用指标实施单因素分析,筛选出组间差异显著的指标,进一步纳入多因素Logistic回归分析,以确定危险因素。

结果

单因素分析结果显示,冠心病组在年龄(均值差为-12.35岁,P=5.4e-37)、肝功能指标(谷丙转氨酶升高11.72 U/L、谷氨酰转肽酶升高23.58 U/L)、血脂水平(甘油三酯升高0.56 mmol/L、LDL-C升高0.43 mmol/L)及尿蛋白含量(升高49.69 mg/dl)等方面均显著异常(P<0.05)。利用XGboost模型,结合年龄、尿蛋白、谷草转氨酶及谷氨酰转肽酶等关键预测因子,构建了用于二分类预测的模型。该模型经80%训练集与20%测试集验证,ROC曲线下面积(AUC)达0.798,五折交叉验证AUC为0.85,敏感度0.89,特异度0.91,f1-score 0.9,较传统单一指标评估方法优越性显著。

结论

本研究建立的MAFLD冠心病风险预测模型具有较高临床适用性,为实施个体化筛查和分层管理提供了量化工具。建议对MAFLD患者常规开展尿蛋白、肝酶及年龄联合评估,早期识别高危人群并启动生活方式干预或药物治疗,从而降低心血管事件发生率。

Objective

The aim of this study was to integrate multiple metabolic indicators from diverse systems and clinical research data to develop a predictive model for metabolic associated fatty liver disease (MAFLD) complicated by coronary heart disease (CHD).

Methods

Patients diagnosed with MAFLD between January 2020 and January 2025 were recruited from Xinjiang Production and Construction Corps Hospital. Those with malignant tumors or cognitive impairments were excluded. The patients were categorized into two groups according to the presence or absence of concurrent coronary heart disease. Univariate analysis was performed on commonly used clinical indicators to screen out those with significant inter-group differences. These selected indicators were then subjected to multivariate Logistic regression analysis to identify risk factors.

Results

Univariate analysis revealed significant abnormalities in the CHD group regarding age (mean difference: -12.35 years, P=5.4e-37), liver function markers (ALT increased by 11.72 U/L, GGT increased by 23.58 U/L), lipid profiles (TG increased by 0.56 mmol/L, LDL-C increased by 0.43 mmol/L), and urinary protein levels (increased by 49.69 mg/dl) (P<0.05). A binary predictive model was developed using logistic regression, incorporating key predictors including age, urinary protein, AST, and GGT. The model demonstrated superior performance with an area under the curve of 0.798 in the 80% training set and 0.85 in cross-validation, exhibiting a sensitivity of 0.89 sensitivity, specificity of 0.9, and f1-score of 0.9, significantly outperforming traditional single-indicator assessment methods.

Conclusion

The MAFLD-CHD risk prediction model established in this study exhibits high clinical applicability, providing a quantitative tool for individualized screening and stratified management. Routine combined assessment of urinary protein, liver enzymes, and age is recommended for MAFLD patients to facilitate early identification of high-risk populations and initiate lifestyle interventions or pharmacological treatments, thereby reducing cardiovascular event incidence.

图1 NAFLD常用指标组间差异森林图 注:NAFLD为非酒精性脂肪性肝病
表1 NAFLD常用指标组间差异数据表
图2 随机森林(RandomForest)和XGBoost模型的ROC曲线
图3 不同模型的特征重要性排序。图a为随机森林模型;图b为XGBoost模型 注:LDL-C为低密度脂蛋白胆固醇;BUN为尿素氮;ALT为谷丙转氨酶;GGT为谷氨酰转肽酶;AST为谷草转氨酶;BMI为体重指数;HDL-C为高密度脂蛋白胆固醇;BUN为尿素氮;ALP为碱性磷酸酶
图4 XGboot模型的SHAP图 注:LDL-C为低密度脂蛋白胆固醇;BUN为尿素氮;HDL-C为高密度脂蛋白胆固醇;BMI为体重指数;ALP为碱性磷酸酶;GGT为谷氨酰转肽酶;AST为谷草转氨酶;ALT为谷丙转氨酶
1
Hu Q, Luo Y, He H, et al. Comprehensive analysis of shared risk genes and immunity-metabolisms between non-alcoholic fatty liver disease and atherosclerosis via bulk and single-cell transcriptome analyses [J]. Heliyon, 2024, 10(15), e35453.
2
李佳琛, 康亚星, 季杨莹, 等. 代谢相关脂肪性肝病与糖尿病慢性并发症的研究进展 [J]. 中国糖尿病杂志, 2023, 31(12): 950-952.
3
Lu C, Zhu H, Xiao M, et al. Classification of metabolic-associated fatty liver disease subtypes based on TCM clinical phenotype [J]. 胃肠与肝病学杂志(英文), 2023, 5(1):6-12.
4
赵锦涵, 张晶. 代谢相关脂肪性肝病无创血清学诊断的研究进展 [J]. 中华肝脏病杂志, 2023, 31(12): 1235-1239.
5
Sun PQ, Dong WM, Yuan YF, et al. Targeted metabolomics study of fatty-acid metabolism in lean metabolic-associated fatty liver disease patients [J]. World J Gastroenterol, 2024, 30(27), 3290-3303.
6
Yang K, Song M. New insights into the pathogenesis of metabolic-associated fatty liver disease (MAFLD): Gut-liver-heart crosstalk [J]. Nutrients, 2023, 15(18):3970.
7
葛亚梅, 彭双立, 陈俊. "黄芪-丹参-山楂"治疗2型糖尿病合并代谢相关脂肪性肝病的作用机制研究 [J]. 中西医结合肝病杂志, 2023, 33(4): 337-342.
8
邓娜, 郭志新. 糖尿病合并代谢相关脂肪性肝病发病机制及诊疗研究进展 [J]. 宁夏医科大学学报, 2023, 45(12): 1279-1284.
9
Ferenc K, Jarmakiewicz-Czaja S, Sokal-Dembowska A, et al. Common denominator of MASLD and some non-communicable diseases [J]. Curr Issues Mol Biol, 2024, 46(7), 6690-6709.
10
Han E, Lee YH, Lee JS, et al. Fibrotic burden determines cardiovascular risk among subjects with metabolic dysfunction-associated fatty liver disease [J]. Gut Liver 2022, 16(5): 786-797.
11
Li Y, Yang P, Ye J, et al. Updated mechanisms of MASLD pathogenesis [J]. Lipids Health Dis, 2024, 23(1): 117.
12
Lee SM, Jung YM, Choi ES, et al. Metabolic dysfunction-associated fatty liver disease and subsequent development of adverse pregnancy outcomes [J]. Clin Gastroenterol Hepatol, 2022, 20(11): 2542-2550.
13
吴小娟, 黄家明, 谢宁生, 等. 胰岛素抵抗对不同慢性肝病患者代谢紊乱的影响 [J]. 中国现代医生, 2023, 61(27): 45-48.
14
Guo Y, Yang J, Ma R, et al. Metabolic dysfunction-associated fatty liver disease is associated with the risk of incident cardiovascular disease: A prospective cohort study in Xinjiang [J]. Nutrients, 2022, 14(12): 2361.
15
Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study [J]. Am J Cardiol, 1976, 38(1), 46-51.
16
SCORE2 working group and ESC cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe [J]. Eur Heart J, 2021, 42(25): 2439-2454.
17
雷偲艺, 连莉优, 郑明华. 《2025年亚太肝病学会临床实践指南: 代谢相关脂肪性肝病的诊断和管理》摘译与解读 [J]. 临床肝胆病杂志, 2025, 41(6): 1043-1052.
18
中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. 中国慢性冠脉综合征患者诊断及管理指南 [J]. 中华心血管病杂志, 2024, 52(6): 589-614.
19
de Zeeuw D, Parving HH, Henning RH. Microalbuminuria as an early marker for cardiovascular disease [J]. J Am Soc Nephrol, 2006, 17(8): 2100-2105.
20
林灼锋. FGF21在动脉粥样硬化发病中的作用及其机制研究 [D]. 广州: 暨南大学, 2011.
21
Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study [J]. Lancet, ,2016, 387(10019): 679-690.
22
Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases [J]. Hepatology, 2018, 67(1): 328-357.
23
纪童童, 李鑫飞, 于岩岩, 等. 代谢相关脂肪性肝病生活方式干预治疗进展 [J]. 临床肝胆病杂志, 2023, 39(8): 1789-1796.
24
Liu M, Li Y, Sun L, et al. Integrating multi-organ imaging-derived phenotypes and genomic information for predicting the occurrence of common diseases [J]. Bioengineering (Basel), 2024, 11(9): 872.
25
Vaz K, Kemp W, Majeed A, et al. NAFLD and MAFLD independently increase the risk of major adverse cardiovascular events (MACE): a 20-year longitudinal follow-up study from regional Australia [J]. Hepatol Int, 2024, 18(4): 1135-1143.
26
Contreras I, Vehi J. Artificial Intelligence for diabetes management and decision support: literature review [J]. J Med Internet Res, 2018, 20(5): e10775.
[1] 高瑞霞, 韩佳豪, 宋丹蕾, 王萍萍, 李嘉. 三种超声技术对超重人群肝脂肪变性诊断性能的评估和比较[J/OL]. 中华医学超声杂志(电子版), 2025, 22(07): 600-607.
[2] 钱何布, 朱林, 姚月平, 姚峰, 李玉卓, 马家驹, 晏倩, 倪晓艳. 应用机器学习建立脓毒性休克患者住院28天死亡预测模型及验证[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(05): 288-297.
[3] 徐世伟, 廖杜荣, 张镐, 叶辉, 陈志平, 雒洪志. 基于一种新炎症-营养指标构建结直肠癌术前淋巴结转移预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 383-389.
[4] 孙圣梅, 习一清, 安宁. 人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 332-339.
[5] 谷瑞辰, 林福杨, 刘永达. 术前尿培养阴性患者PCNL术后尿路感染的预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 772-777.
[6] 黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.
[7] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[8] 赵俊宇, 林航宇, 李会灵, 王显飞, 游川. 肝癌肝切除术后大量腹水预测模型的建立与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 740-747.
[9] 刘燕, 马亦旻. 消化道早癌患者内镜黏膜下剥离术后局部复发预测模型构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 576-582.
[10] 田俊超, 冯美静, 王惠惠, 张鸿雁, 刘毅. 抗血小板药物重启时机对消化性溃疡出血合并冠心病患者再出血与心脑血管事件风险的影响[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 583-589.
[11] 李曰平, 鞠倩, 张汝梦, 韩博. 基于CT影像组学预测胃癌根治术复发风险的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 460-466.
[12] 李姁, 冯中秋. HBV相关原发性肝癌患者经导管动脉化疗栓塞术后严重腹痛预测模型的构建及验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 480-485.
[13] 王超, 张晓会, 李晓帆, 赵海丹. 维持性血液透析患者感染与心脑血管死亡风险的比较及联合预测模型构建[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 675-681.
[14] 皇立媛, 浦洁, 王苏贵, 陈婷婷, 朱德慧, 胡雪. 中青年脑卒中患者应激障碍风险预测模型的构建与验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 504-512.
[15] 曹将威, 厉腊梅, 李晓霞, 刘妍, 顾飞. 早发心肌梗死患者甘油三酯葡萄糖指数变化及其临床意义[J/OL]. 中华卫生应急电子杂志, 2025, 11(05): 289-293.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?