| 1 |
Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans [J]. Cold Spring Harb Perspect Med, 2014, 5(1): a019273.
|
| 2 |
Fisher MC, Alastruey-Izquierdo A, Berman J, et al. Tackling the emerging threat of antifungal resistance to human health [J]. Nat Rev Microbiol, 2022, 20(9): 557-571.
|
| 3 |
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans [J]. Virulence, 2022, 13(1): 89-121.
|
| 4 |
Kumamoto CA, Gresnigt MS, Hube B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine [J]. Curr Opin Microbiol, 2020, 56: 7-15.
|
| 5 |
Pérez JC. Fungi of the human gut microbiota: roles and significance [J]. Int J Med Microbiol, 2021, 311(3): 151490.
|
| 6 |
Kraneveld EA, de Soet JJ, Deng DM, et al. Identification and differential gene expression of adhesin-like wall proteins in Candida glabrata biofilms [J]. Mycopathologia, 2011, 172(6): 415-427.
|
| 7 |
Yu DY, Feng WL. Study on the effect of SAP2 and STP1 in Itraconazole resistance of Candida albicans under different states[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(03): 283-294.
|
| 8 |
Rosiana S, Zhang L, Kim GH, et al. Comprehensive genetic analysis of adhesin proteins and their role in virulence of Candida albicans [J]. Genetics, 2021, 217(2): iyab003.
|
| 9 |
Zhou T, Solis NV, Marshall M, et al. Fungal Als proteins hijack host death effector domains to promote inflammasome signaling [J]. Nat Commun, 2025, 16(1): 1562.
|
| 10 |
Zhou T, Solis NV, Marshall M, et al. Hyphal Als proteins act as CR3 ligands to promote immune responses against Candida albicans [J]. Nat Commun, 2024, 15(1): 3926.
|
| 11 |
Hoyer LL, Cota E. Candida albicans agglutinin-like sequence (Als) family vignettes: a review of Als protein structure and function [J]. Front Microbiol, 2016, 7: 280.
|
| 12 |
Finkel JS, Xu W, Huang D, et al. Portrait of Candida albicans adherence regulators [J]. PLoS Pathog, 2012, 8(2): e1002525.
|
| 13 |
Zhao X, Oh SH, Coleman DA, et al. ALS1 deletion increases the proportion of small cells in a Candida albicans culture population: hypothesizing a novel role for Als1 [J]. Front Cell Infect Microbiol, 2022, 12: 895068.
|
| 14 |
Rosiana S, Zhang L, Kim GH, et al. Comprehensive genetic analysis of adhesin proteins and their role in virulence of Candida albicans [J]. Genetics, 2021, 217(2): iyab003.
|
| 15 |
Phan QT, Myers CL, Fu Y, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells [J]. PLoS Biol, 2007, 5(3): e64.
|
| 16 |
Hoyer LL, Green CB, Oh SH, et al. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family--a sticky pursuit [J]. Med Mycol, 2008, 46(1): 1-15.
|
| 17 |
Lin J, Oh SH, Jones R, et al. The peptide-binding cavity is essential for Als3-mediated adhesion of Candida albicans to human cells [J]. J Biol Chem, 2014, 289(26): 18401-18412.
|
| 18 |
Salgado PS, Yan R, Taylor JD, et al. Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans [J]. Proc Natl Acad Sci USA, 2011, 108(38): 15775-15779.
|
| 19 |
Zhou T, Solis NV, Marshall M, et al. Fungal Als proteins hijack host death effector domains to promote inflammasome signaling [J]. Nat Commun, 2025, 16(1): 1562.
|
| 20 |
Oh SH, Hoyer LL. Assessing Als3 peptide-binding cavity and amyloid-forming region contributions to Candida albicans invasion of human oropharyngeal epithelial cells [J]. Front Cell Infect Microbiol, 2022, 12: 890839.
|
| 21 |
Ruben S, Garbe E, Mogavero S, et al. Ahr1 and Tup1 contribute to the transcriptional control of virulence-associated genes in Candida albicans [J]. mBio, 2020, 11(2): e00206-e00220.
|
| 22 |
Matsumoto H, Nagao J, Cho T, Kodama J. Evaluation of pathogenicity of Candida albicans in germination-ready states using a silkworm infection model [J]. Med Mycol J, 2013, 54(2): 131-140.
|
| 23 |
Liu C, Xu C, Du Y, et al. Role of agglutinin-like sequence protein 3 (Als3) in the structure and antifungal resistance of Candida albicans biofilms [J]. FEMS Microbiol Lett, 2021, 368(14): fnab089.
|
| 24 |
Deng K, Jiang W, Jiang Y, et al. ALS3 expression as an indicator for Candida albicans biofilm formation and drug resistance [J]. Front Microbiol, 2021, 12: 655242.
|
| 25 |
Tan J, Liu Q, Liu Z, et al. A small heat shock protein Fmp28 influences virulence by regulating Als3 expression via the cAMP-PKA signaling pathway in Candida albicans [J]. mBio, 2025, 16(8): e0125325.
|
| 26 |
Hoyer LL, Cota E. Candida albicans agglutinin-like sequence (Als) family vignettes: a review of Als protein structure and function [J]. Front Microbiol, 2016, 7: 280.
|
| 27 |
Garcia MC, Lee JT, Ramsook CB, et al. A role for amyloid in cell aggregation and biofilm formation [J]. PLoS One, 2011, 6(3): e17632.
|
| 28 |
Morales-López S, Villero Wolf Y, Torres Y, et al. HWP1 gene sequence diversity and antifungal susceptibility patterns in Colombian vulvovaginal isolates of the Candida albicans species complex [J]. Int J Microbiol, 2025: 8507361.
|
| 29 |
Oh SH, Martin-Yken H, Coleman DA, et al. Development and use of a monoclonal antibody specific for the Candida albicans cell-surface protein Hwp1 [J]. Front Cell Infect Microbiol, 2022, 12: 907453.
|
| 30 |
Chen R, Feng Y, Cai H, et al. DNA damage repair factor Rad18 controls virulence partially via transcriptional suppression of genes HWP1 and ECE1 in Candida albicans [J]. Virulence, 2024, 15(1): 2433201.
|
| 31 |
Ji Y, Chen D, Shao M, et al. The P-type calcium pump Spf1 regulates immune response by maintenance of the endoplasmic reticulum-plasma membrane contacts during Candida albicans systemic infection [J]. Mycology, 2024, 16(2): 856-875.
|
| 32 |
Maras B, Maggiore A, Mignogna G, et al. Hyperexpression of CDRs and HWP1 genes negatively impacts on Candida albicans virulence [J]. PLoS One, 2021, 16(6): e0252555.
|
| 33 |
Nobile CJ, Schneider HA, Nett JE, et al. Complementary adhesin function in C. albicans biofilm formation [J]. Curr Biol, 2008, 18(14): 1017-1024.
|
| 34 |
Ordiales H, Olano C, Martín C, et al. Phosphoglycerate mutase and methionine synthase act as adhesins of Candida albicans to the corneal epithelium, altering their expression during the tissue adhesion process [J]. Exp Eye Res, 2025, 254: 110322.
|
| 35 |
Martorano-Fernandes L, Goodwine JS, Ricomini-Filho AP, et al. Candida albicans adhesins Als1 and Hwp1 modulate interactions with streptococcus mutans [J]. Microorganisms, 2023, 11(6): 1391.
|
| 36 |
Francis AB, Settem RP, Jeyamoorthy M, et al. Multifaceted roles of Candida albicans and Streptococcus mutans in contributing to polybiofilm infections in early childhood caries [J]. Front Cell Infect Microbiol, 2025, 15: 1625103.
|
| 37 |
Peters BM, Ovchinnikova ES, Krom BP, et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p [J]. Microbiology (Reading), 2012, 158(Pt 12): 2975-2986.
|
| 38 |
Nobile CJ, Schneider HA, Nett JE, et al. Complementary adhesin function in C. albicans biofilm formation [J]. Curr Biol, 2008, 18(14): 1017-1024.
|
| 39 |
Karami-Feli M, Jahanshiri Z, Sadeghi A. Antifungal potential of streptomyces-derived metabolites against fluconazole-resistant oral candida albicans: in vitro evaluation and mechanistic insights [J]. Iran Biomed J, 2025, 29(3): 126-137.
|
| 40 |
Bordea MA, Nutz BTG, Chiorean AD, et al. Microbial Interactions in nature: the impact of gram-negative bacilli on the hyphal growth of Candida albicans [J]. Pathogens, 2025, 14(4): 327.
|
| 41 |
Bose S, Singh DV, Adhya TK, et al. Escherichia coli, but not staphylococcus aureus, functions as a chelating agent that exhibits antifungal activity against the pathogenic yeast Candida albicans [J]. J Fungi (Basel), 2023, 9(3): 286.
|
| 42 |
Li F, Palecek SP. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions [J]. Microbiology (Reading), 2008, 154(Pt 4): 1193-1203.
|
| 43 |
Li F, Svarovsky MJ, Karlsson AJ, et al. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo [J]. Eukaryot Cell, 2007, 6(6): 931-939.
|
| 44 |
Ramalho-Oliveira R, Oliveira-Vieira B, Viola JPB. IRF2BP2: A new player in the regulation of cell homeostasis [J]. J Leukoc Biol, 2019, 106(3): 717-723.
|
| 45 |
Mezni G, Issa H, Dahdah M, et al. New curcumin analogue (PAC) inhibits Candida albicans virulence, restricts its adhesion potential, and relieves oral epithelial cell inflammation and defense mechanisms [J]. Antibiotics (Basel), 2025, 14(5): 495.
|
| 46 |
Basrani S, Patil S, Chougule S, et al. Repurposing of quinine as an antifungal antibiotic: Identification of molecular targets in Candida albicans [J]. Folia Microbiol (Praha), 2025.
|
| 47 |
Cheng M, Liu S, Zhu M, et al. Adhesin antibody-grafted mesoporous silica nanoparticles suppress immune escape for treatment of fungal systemic infection [J]. Molecules, 2024, 29(19): 4547.
|
| 48 |
Gil-Bona A, Reales-Calderon JA, Parra-Giraldo CM, et al. The cell wall protein Ecm33 of Candida albicans is involved in chronological life span, morphogenesis, cell wall regeneration, stress tolerance, and host-cell interaction [J]. Front Microbiol, 2016, 7: 64.
|
| 49 |
Thanh Nguyen H, Zhang R, Inokawa N, et al. Candida albicans Bgl2p, Ecm33p, and Als1p proteins are involved in adhesion to saliva-coated hydroxyapatite [J]. J Oral Microbiol, 2021, 13(1): 1879497.
|
| 50 |
Rouabhia M, Semlali A, Chandra J, et al. Disruption of the ECM33 gene in Candida albicans prevents biofilm formation, engineered human oral mucosa tissue damage and gingival cell necrosis/apoptosis [J]. Mediators Inflamm, 2012: 398207.
|
| 51 |
Martínez-López R, Molero G, Parra-Giraldo CM, et al. From high protection to lethal effect: diverse outcomes of immunization against invasive candidiasis with different Candida albicans extracellular vesicles [J]. Int J Mol Sci, 2024, 26(1): 244.
|
| 52 |
Granger BL. Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans [J]. Eukaryot Cell, 2012, 11(6): 795-805.
|
| 53 |
Yang M, Solis NV, Marshall M, et al. Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence [J]. PLoS Pathog, 2022, 18(1): e1010192.
|
| 54 |
Granger BL. Propeptide genesis by Kex2-dependent cleavage of yeast wall protein 1 (Ywp1) of Candida albicans [J]. PLoS One, 2018, 13(11): e0207955.
|
| 55 |
McCall AD, Pathirana RU, Prabhakar A, et al. Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins [J]. NPJ Biofilms Microbiomes, 2019, 5(1): 21.
|
| 56 |
Lee JH, Kim YG, Park I, et al. Antifungal and antibiofilm activities of flavonoids against Candida albicans: Focus on 3,2'-dihydroxyflavone as a potential therapeutic agent [J]. Biofilm, 2024, 8: 100218.
|
| 57 |
Cao C, Wu M, Bing J, et al. Global regulatory roles of the cAMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in Candida albicans [J]. Mol Microbiol, 2017, 105(1): 46-64.
|
| 58 |
Chen H, Zhou X, Ren B, et al. The regulation of hyphae growth in Candida albicans [J]. Virulence, 2020, 11(1): 337-348.
|
| 59 |
Giacometti R, Kronberg F, Biondi RM, et al. Candida albicans Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression [J]. Yeast, 2011, 28(4): 293-308.
|
| 60 |
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae [J]. FEMS Microbiol Rev, 2012, 36(1): 25-58.
|
| 61 |
Chow EWL, Pang LM, Wang Y. From Jekyll to hyde: the yeast-hyphal transition of Candida albicans [J]. Pathogens, 2021, 10(7): 859.
|
| 62 |
Schena NC, Baker KM, Stark AA, et al. Constitutive ALS3 expression in Candida albicans enhances adhesion and biofilm formation of efg1, but not cph1 mutant strains [J]. PLoS One, 2023, 18(7): e0286547.
|
| 63 |
Xiong L, Pereira De Sa N, Zarnowski R, et al. Biofilm-associated metabolism via ERG251 in Candida albicans [J]. PLoS Pathog, 2024, 20(5): e1012225.
|
| 64 |
Wang S, Xie S, Li T, et al. Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of Candida albicans [J]. Biofilm, 2024, 9: 100251.
|
| 65 |
Yazdanpanah S, Shafiekhani M, Emami M, et al. Exploring the anti-biofilm and gene regulatory effects of anti-inflammatory drugs on Candida albicans [J]. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(6): 7263-7272.
|
| 66 |
Sumlu E, Aydin M, Korucu EN, et al. Artemisinin may disrupt hyphae formation by suppressing biofilm-related genes of Candida albicans: in vitro and in silico approaches [J]. Antibiotics (Basel), 2024, 13(4): 310.
|
| 67 |
Pang C, Chen J, Yang L, et al. Shikonin inhibits Candida albicans biofilms via the Ras1-cAMP-Efg1 signalling pathway [J]. Int J Gen Med, 2023, 16: 2653-2662.
|
| 68 |
Correia I, Prieto D, Román E, et al. Cooperative role of MAPK pathways in the interaction of Candida albicans with the host epithelium [J]. Microorganisms, 2019, 8(1): 48.
|
| 69 |
Correia I, Alonso-Monge R, Pla J. The hog1 MAP kinase promotes the recovery from cell cycle arrest induced by hydrogen peroxide in Candida albicans [J]. Front Microbiol, 2017, 7: 2133.
|
| 70 |
Gao Y, Cao Q, Xiao Y, et al. The progress and future of the treatment of Candida albicans infections based on nanotechnology [J]. J Nanobiotechnology, 2024, 22(1): 568.
|
| 71 |
Román E, Cottier F, Ernst JF, et al. Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans [J]. Eukaryot Cell, 2009, 8(8): 1235-1249.
|
| 72 |
Correia I, Román E, Prieto D, et al. Complementary roles of the Cek1 and Cek2 MAP kinases in Candida albicans cell-wall biogenesis [J]. Future Microbiol, 2016, 11(1): 51-67.
|
| 73 |
Wang S, Xie S, Li T, et al. Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of Candida albicans [J]. Biofilm, 2024, 9: 100251.
|
| 74 |
Sumlu E, Aydin M, Korucu EN, et al. Lichen extracts inhibit Candida albicans growth and biofilm formation via cAMP-PKA and Cek1 MAPK signaling pathway [J]. Food Bioscience, 2025, 71: 107106.
|
| 75 |
Rocha GR, Florez Salamanca EJ, de Barros AL, et al. Effect of tt-farnesol and myricetin on in vitro biofilm formed by streptococcus mutans and Candida albicans [J]. BMC Complement Altern Med, 2018, 18(1): 61.
|
| 76 |
Xie Y, Hua H, Zhou P. Magnolol as a potent antifungal agent inhibits Candida albicans virulence factors via the PKC and Cek1 MAPK signaling pathways [J]. Front Cell Infect Microbiol, 2022, 12: 935322.
|
| 77 |
Bui LN, Iosue CL, Wykoff DD. Tup1 paralog CgTUP11 is a stronger repressor of transcription than CgTUP1 in Candida glabrata [J]. mSphere, 2022, 7(2): e0076521.
|
| 78 |
Ruben S, Garbe E, Mogavero S, et al. Ahr1 and Tup1 contribute to the transcriptional control of virulence-associated genes in Candida albicans [J]. mBio, 2020, 11(2): e00206-e00220.
|
| 79 |
Braun BR, Kadosh D, Johnson AD. NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction [J]. EMBO J, 2001, 20(17): 4753-4761.
|
| 80 |
Kebaara BW, Langford ML, Navarathna DH, et al. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction [J]. Eukaryot Cell, 2008, 7(6): 980-987.
|
| 81 |
Khodavandi P, Soogh MM, Alizadeh F, et al. Menthol as an effective inhibitor of quorum sensing and biofilm formation in Candida albicans and Candida glabrata by targeting the transcriptional repressor TUP1 [J]. Mol Biol Rep, 2024, 51(1): 1114.
|
| 82 |
Gavandi T, Patil S, Basrani S, et al. MIG1, TUP1 and NRG1 mediated yeast to hyphal morphogenesis inhibition in Candida albicans by ganciclovir [J]. Braz J Microbiol, 2024, 55(3): 2047-2056.
|
| 83 |
Kulig K, Wronowska E, Juszczak M, et al. Host cell responses to Candida albicans biofilm-derived extracellular vesicles [J]. Front Cell Infect Microbiol, 2025, 14: 1499461.
|
| 84 |
Rodríguez DL, Lindemann-Perez E, Perez JC. RFX transcription factor in the human-associated yeast Candida albicans regulates adhesion to oral epithelium [J]. Mol Microbiol, 2024, 121(4): 727-741.
|
| 85 |
Sui X, Yan L, Jiang YY. The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections [J]. Vaccine, 2017, 35(43): 5786-5793.
|
| 86 |
Singh S, Nabeela S, Barbarino A, et al. Antibodies targeting Candida albicans Als3 and Hyr1 antigens protect neonatal mice from candidiasis [J]. Front Immunol, 2022, 13: 925821.
|
| 87 |
Oh SH, Martin-Yken H, Coleman DA, et al. Development and use of a monoclonal antibody specific for the Candida albicans cell-surface protein Hwp1 [J]. Front Cell Infect Microbiol, 2022, 12: 907453.
|
| 88 |
Ganapathe LS, Mohamed MA, Mohamad Yunus R, et al. Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation [J]. Magnetochemistry, 2020, 6(4): 68.
|
| 89 |
Khodavandi P, Hosseini A, Khodavandi A, et al. Hyphae-specific genes: possible molecular targets for magnetic iron oxide nanoparticles alone and combined with visible light in Candida albicans [J]. Photodiagnosis Photodyn Ther, 2023, 44: 103822.
|
| 90 |
Wu MY, Xu X, Hu R, et al. A membrane-targeted photosensitizer prevents drug resistance and induces immune response in treating Candidiasis [J]. Adv Sci (Weinh), 2023, 10(35): e2207736.
|