切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (10) : 793 -797. doi: 10.3877/cma.j.issn.1674-0785.2025.10.010

综述

自噬在多发性骨髓瘤耐药机制的研究进展
刘奕彤1, 田馨2,()   
  1. 1 050031 石家庄,河北医科大学医学技术学院
    2 050051 石家庄,河北医科大学第三医院检验科
  • 收稿日期:2025-10-11 出版日期:2025-10-30
  • 通信作者: 田馨
  • 基金资助:
    河北省卫生健康委员会(20241195); 河北医科大学大学生创新实验计划项目(USIP2024422)

Emerging insights into autophagy-mediated drug resistance in multiple myeloma

Yitong Liu1, Xin Tian2,()   

  1. 1 College of Medical Technology, Hebei Medical University, Shijiazhuang 050031, China
    2 Department of Laboratory Medicine, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
  • Received:2025-10-11 Published:2025-10-30
  • Corresponding author: Xin Tian
引用本文:

刘奕彤, 田馨. 自噬在多发性骨髓瘤耐药机制的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(10): 793-797.

Yitong Liu, Xin Tian. Emerging insights into autophagy-mediated drug resistance in multiple myeloma[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(10): 793-797.

多发性骨髓瘤在过去的几十年中,随着新药的使用,显著改善了MM患者的生存时间,但大部分患者还会出现疾病复发甚至加重。耐药性仍然是MM治疗中亟待解决的最大难题。近年来研究发现,自噬在MM耐药机制中扮演着关键角色。本文就自噬及其调控机制;自噬与MM治疗、肿瘤微环境、代谢重编程的作用;以及自噬相关的MM治疗策略等方面做一综述,以期为MM的临床诊治提供新思路。

Over the past few decades, the use of novel therapeutics has significantly improved survival outcomes for patients with multiple myeloma (MM). However, most patients still experience disease recurrence or progression. Drug resistance remains the most pressing challenge in MM treatment. Recent studies have revealed that autophagy plays a pivotal role in drug resistance in MM. This review examines autophagy and its regulatory mechanisms; the interplay between autophagy and MM treatment, tumor microenvironment, and metabolic reprogramming; and autophagy-related therapeutic strategies for MM, aiming to provide novel insights for clinical diagnosis and treatment of MM.

1
Rajkumar SV. Multiple myeloma: 2023 update on diagnosis, risk-stratification, and management [J]. Am J Hematol, 2023, 98(1): 120-148.
2
Malard F, Neri P, Bahlis NJ, et al. Multiple myeloma [J]. Nat Rev Dis Primers, 2024, 10(1): 45.
3
Kumar SK, Dispenzieri A, Lacy MQ, et al. Refractory multiple myeloma: definitions, mechanisms, and management [J]. Lancet Oncol, 2014, 15(7): e288-e298.
4
Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world [J]. Trends Cell Biol, 2012, 22(8): 407-417.
5
Schneider JL, Cuervo AM. Autophagy and human disease: emerging themes [J]. Curr Opin Genet Dev, 2014, 26: 16-23.
6
Nikesitch N, Rebeiro P, Ho LL, et al. The role of chaperone-mediated autophagy in Bortezomib resistant multiple myeloma [J]. Cells, 2021, 10(12): 3464.
7
Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy [J]. J Biol Chem, 2007, 282(33): 24131-24145.
8
Li Y, Li S, Wu H. Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress [J]. Cells, 2022, 11(5): 851.
9
Lamy L, Ngo VN, Emre NC, et al. Control of autophagic cell death by caspase-10 in multiple myeloma [J]. Cancer Cell, 2013, 23(4): 435-449.
10
Milani M, Rzymski T, Mellor HR, et al. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib [J]. Cancer Res, 2009, 69(10): 4415-4423.
11
Tang P, Yu Z, Sun H, et al. CRIP1 involves the pathogenesis of multiple myeloma via dual-regulation of proteasome and autophagy [J]. EBioMedicine, 2024, 100: 104961.
12
Chen J, Cao W, Huang X, et al. TRIM21 enhances bortezomib sensitivity in multiple myeloma by halting prosurvival autophagy [J]. Blood Adv, 2023, 7(19): 5752-5770.
13
Zang X, Wang J, Xia Y, et al. LncRNA MEG3 promotes the sensitivity of bortezomib by inhibiting autophagy in multiple myeloma [J]. Leuk Res, 2022, 123: 106967.
14
Wu HQ, Qin RC, Li WJ, et al. Inhibition of CDC27 O-GlcNAcylation coordinates the antitumor efficacy in multiple myeloma through the autophagy-lysosome pathway [J]. Acta Pharmacol Sin, 2025, 46(7): 2041-2055.
15
Xia J, He Y, Meng B, et al. NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma [J]. Mol Oncol, 2020, 14(4): 763-778.
16
Riz I, Hawley TS, Hawley RG. KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models [J]. Oncotarget, 2015, 6(17): 14814-14831.
17
Neumeister P, Schulz E, Pansy K, et al. Targeting the microenvironment for treating multiple myeloma [J]. Int J Mol Sci, 2022, 23(14): 7627.
18
Filippi I, Saltarella I, Aldinucci C, et al. Different adaptive responses to hypoxia in normal and multiple myeloma endothelial cells [J]. Cell Physiol Biochem, 2018, 46(1): 203-212.
19
Wang Y, Xu W, Yan Z, et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways [J]. J Exp Clin Cancer Res, 2018, 37(1): 63.
20
Bar-Natan M, Stroopinsky D, Luptakova K, et al. Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein MUC1 [J]. Br J Haematol, 2017, 176(6): 929-938.
21
Yan Y, Chen X, Wang X, et al. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer [J]. J Exp Clin Cancer Res, 2019, 38(1): 171.
22
De Veirman K, Rao L, De Bruyne E, et al. Cancer associated fibroblasts and tumor growth: focus on multiple myeloma [J]. Cancers (Basel), 2014, 6(3): 1363-1381.
23
Zhang X, Zhang H, Lan H, et al. CAR-T cell therapy in multiple myeloma: current limitations and potential strategies [J]. Front Immunol, 2023, 14: 1101495.
24
Sun J, Corradini S, Azab F, et al. IL-10R inhibition reprograms tumor-associated macrophages and reverses drug resistance in multiple myeloma [J]. Leukemia, 2024, 38(11): 2355-2365.
25
Sun J, Park C, Guenthner N, et al. Tumor-associated macrophages in multiple myeloma: advances in biology and therapy [J]. J Immunother Cancer, 2022, 10(4): e003975.
26
Zhu Y, Jian X, Chen S, et al. Targeting gut microbial nitrogen recycling and cellular uptake of ammonium to improve bortezomib resistance in multiple myeloma [J]. Cell Metab, 2024, 36(1): 159-175.e8.
27
Gao X, Feng Q, Zhang Q, et al. Targeting enolase 1 reverses bortezomib resistance in multiple myeloma through YWHAZ/Parkin axis [J]. J Biomed Sci, 2025, 32(1): 9.
28
Gu Z, Xia J, Xu H, et al. NEK2 promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase [J]. J Hematol Oncol, 2017, 10(1): 17.
29
Zhou W, Yang Y, Xia J, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers [J]. Cancer Cell, 2013, 23(1): 48-62.
30
Tibullo D, Giallongo C, Romano A, et al. Mitochondrial functions, energy metabolism and protein glycosylation are interconnected processes mediating resistance to bortezomib in multiple myeloma cells [J]. Biomolecules, 2020, 10(5): 696.
31
Waldschmidt JM, Kloeber JA, Anand P, et al. Single-cell profiling reveals metabolic reprogramming as a resistance mechanism in BRAF-mutated multiple myeloma [J]. Clin Cancer Res, 2021, 27(23): 6432-6444.
32
Vogl DT, Stadtmauer EA, Tan KS, et al. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma [J]. Autophagy, 2014, 10(8): 1380-1390.
33
Ma R, Yu D, Peng Y, et al. Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells [J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(6): 775-783.
34
Ghazi PC, O'Toole KT, Srinivas Boggaram S, et al. Inhibition of ULK1/2 and KRASG12C controls tumor growth in preclinical models of lung cancer [J]. Elife, 2024, 13: RP96992.
35
Chen Y, Xie X, Wang C, et al. Dual targeting of NUAK1 and ULK1 using the multitargeted inhibitor MRT68921 exerts potent antitumor activities [J]. Cell Death Dis, 2020, 11(8): 712.
36
Ray A, Du T, Wan X, et al. A novel small molecule inhibitor of CD73 triggers immune-mediated multiple myeloma cell death [J]. Blood Cancer J, 2024, 14(1): 58.
37
Tang L, Zhang H, Zhou F, et al. Targeting autophagy overcomes cancer-intrinsic resistance to CAR-T immunotherapy in B-cell malignancies [J]. Cancer Commun (Lond), 2024, 44(3): 408-432.
38
Zhong Y, Tian F, Ma H, et al. FTY720 induces ferroptosis and autophagy via PP2A/AMPK pathway in multiple myeloma cells [J]. Life Sci, 2020, 260: 118077.
[1] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[2] 李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.
[3] 王峰, 曲更宝, 王文彦, 代艳亭. 罗汉果醇对人乳腺癌细胞自噬和凋亡的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 27-32.
[4] 李嘉欢, 张圣洁, 马成虎, 王江平, 刘振豪, 宋奇锋, 李生贵, 周胜虎. 自噬在假体周围骨溶解中的作用机制及研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(06): 714-719.
[5] 茹垚钦, 杨周睿, 毛腾飞, 张钦, 潘文明. 吸入性氢气通过自噬改善大鼠脊髓损伤后运动功能及神经组织修复的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(05): 362-371.
[6] 何林霞, 相阳, 刘心如, 郑兴锋. 巨噬细胞代谢重编程在脓毒症急性肺损伤中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 69-74.
[7] 尹晓南, 杨弘鑫, 沈朝勇, 尹源, 张波. 胃肠间质瘤四线瑞派替尼的耐药机制及治疗进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 414-420.
[8] 王杰艳, 胡博文, 梁辉. 细胞死亡在肾缺血再灌注损伤中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 653-657.
[9] 程玉红, 杨雪, 李春飞, 代文静. 线粒体自噬调控特发性肺纤维化发生发展的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 833-836.
[10] 吕园园, 高辰旸, 徐永君. 纳米金棒对A549 细胞的毒性效应及其对自噬的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 20-29.
[11] 王辉, 崔恬玉, 段凡. 哺乳动物雷帕霉素靶蛋白信号通路在IgA肾病发病机制中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 209-213.
[12] 艾孜买提江·吐尔逊, 玉苏甫·马合木提, 姜世豪, 卡合尔曼·卡德尔, 买买提力·艾沙, 苏日青, 成晓江. LAMP1对脑缺血再灌注大鼠小胶质细胞损伤和自噬的影响[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(04): 230-237.
[13] 阿布都热合曼·阿卜拉, 玉苏甫·马合木提, 苏日青, 卡合尔曼·卡德尔, 买买提力·艾沙, 成晓江. TSPO对脑缺血再灌注损伤及自噬的影响[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 144-153.
[14] 谢培森, 张绍龙, 张克石, 关振鹏. Circ_0136474增强软骨细胞自噬抑制骨关节炎软骨缺损[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 374-381.
[15] 欧范妍, 郭乾, 曾莉雄, 陈秋莉, 甘厚玉, 杨洁. 基于机器学习和转录组学综合分析线粒体自噬和铁死亡关键基因在成人脓毒症诱导ARDS中的免疫调控作用机制[J/OL]. 中华卫生应急电子杂志, 2025, 11(02): 86-101.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?