切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (07) : 405 -409. doi: 10.3877/cma.j.issn.1674-0785.2018.07.007

所属专题: 文献

综述

靶向Th17细胞免疫治疗中重度哮喘的作用
韩露1, 王楠1, 陈子1, 周林福2,()   
  1. 1. 210029 南京医科大学第一附属医院呼吸与危重症医学科
    2. 210029 南京医科大学第一附属医院呼吸与危重症医学科;210029 南京医科大学中西医结合研究所;215228 南京医科大学附属江苏盛泽医院(江苏省人民医院盛泽分院)呼吸内科
  • 收稿日期:2018-02-20 出版日期:2018-04-01
  • 通信作者: 周林福
  • 基金资助:
    国家重点研发计划(2018YFC1313600); 国家自然科学基金(81820108001、81670029、81370133、81170018); 江苏省医学重点人才项目(ZDRCA2016018); 江苏省333高层次人才工程第二层次培养对象(201605); 江苏省社会发展重点研发专项(BE2015651); 江苏省卫生计生委预防医学科研课题(Y2015026); 江苏省中医药科技项目(YB2015110); 苏州市科技计划项目(SYS201402); 江苏省研究生科研创新计划(KYCX171285)

Th17 cells as a potential target for treatment of moderate-to-severe asthma

Lu Han1, Nan Wang1, Zi Chen1, Linfu Zhou2,()   

  1. 1. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
    2. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Institute of Integrative Medicine of Nanjing Medical University, Nanjing 210029, China; Department of Respiratory Medicine, Jiangsu Shengze Hospital, Suzhou 215228, China
  • Received:2018-02-20 Published:2018-04-01
  • Corresponding author: Linfu Zhou
  • About author:
    Corresponding author: Zhou Linfu, Email:
引用本文:

韩露, 王楠, 陈子, 周林福. 靶向Th17细胞免疫治疗中重度哮喘的作用[J]. 中华临床医师杂志(电子版), 2018, 12(07): 405-409.

Lu Han, Nan Wang, Zi Chen, Linfu Zhou. Th17 cells as a potential target for treatment of moderate-to-severe asthma[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(07): 405-409.

支气管哮喘(简称哮喘)是多种炎症细胞和炎性介质参与的慢性气道炎症性疾病。Thl/Th2免疫反应失衡是哮喘主要的发病机制,而嗜酸粒细胞性气道炎症和气道高反应性为哮喘的显著临床特征。Th17细胞通过活化和募集中性粒细胞,促进气道炎症发生发展,尤其与中重度哮喘密切相关。Th17细胞为中重度哮喘提供了潜在的治疗靶点。深入研究Th17细胞分化调控机制,有望为治疗中性粒细胞性哮喘带来新的愿景。

Bronchial asthma (asthma) is a chronic inflammatory airway disease involving a variety of inflammatory cells and inflammatory mediators. The imbalance of Thl/Th2 immune responses leads to airway hyperresponsiveness and eosinophilic airway inflammation. However, Th17 cells play a role in the pathophysiology of asthma through the recruitment and activation of neutrophils. Neutrophil infiltration is related to the occurrence of moderate-to-severe asthma. Therefore, Th17 cells may be a potential therapeutic target for asthma, especially moderate-to-severe asthma. Further studies to dissect the molecular mechanism of Th17 cell differentiation will contribute to developing a novel strategy for treatment of neutrophilic asthma.

1
Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins [J]. J Immunol, 1986, 136(7):2348-2357.
2
Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma [J]. Eur Respir J, 2014, 43(2):343-373.
3
Hartley R, Berair R, Brightling CE. Severe asthma: novel advances in the pathogenesis and therapy [J]. Pol Arch Med Wewn, 2014, 124(5):247-254.
4
Cosmi L, Maggi L, Santarlasci V, et al. T helper cells plasticity in inflammation [J]. Cytometry A, 2014, 85(1):36-42.
5
Talaat RM, Mohamed SF, Bassyouni IH, et al. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity [J]. Cytokine, 2015, 72(2):146-153.
6
Dolff S, Bijl M, Huitema MG, et al. Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus [J]. Clin Immunol, 2011, 141(2):197-204.
7
7Semik-Orzech A, Barczyk A, Pierzchala W. The role of interleukin 17A in inducing neutrophilic inflammation in the pulmonary tract [J]. Pol Merkur Lekarski, 2007, 22(129):163-168.
8
Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma [J]. Immunity, 2008, 28(1):29-39.
9
Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17T helper cells [J]. Cell, 2006, 126(6):1121-1133.
10
Zhang F, Fuss IJ, Yang Z, et al. Transcription of RORgammat in developing Th17 cells is regulated by E-proteins [J]. Mucosal Immunol, 2014, 7(3):521-532.
11
Solt L A, Kumar N, Nuhant P, et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand [J]. Nature, 2011, 472(7344):491-494.
12
Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation [J]. Semin Immunol, 2007, 19(6):409-417.
13
Nembrini C, Marsland BJ, Kopf M. IL-17-producing T cells in lung immunity and inflammation [J]. J Allergy Clin Immunol, 2009, 123(5):986-994, 995-996.
14
Pelletier M, Maggi L, Micheletti A, et al. Evidence for a cross-talk between human neutrophils and Th17 cells [J]. Blood, 2010, 115(2):335-343.
15
马超,任少敏,刘春枝. 不同严重程度支气管哮喘儿童诱导痰IL-17含量及炎症细胞百分比变化 [J]. 国际儿科学杂志, 2012, 39(3):316-318.
16
Irvin C, Zafar I, Good J, et al. Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma [J]. J Allergy Clin Immunol, 2014, 134(5):1175-1186.
17
McKinley L, Alcorn JF, Peterson A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice [J]. J Immunol, 2008, 181(6):4089-4097.
18
Newcomb DC, Boswell MG, Sherrill TP, et al. IL-17A induces signal transducers and activators of transcription-6-independent airway mucous cell metaplasia [J]. Am J Respir Cell Mol Biol, 2013, 48(6):711-716.
19
Ano S, Morishima Y, Ishii Y, et al. Transcription factors GATA-3 and RORgammat are important for determining the phenotype of allergic airway inflammation in a murine model of asthma [J]. J Immunol, 2013, 190(3):1056-1065.
20
Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells [J]. Annu Rev Immunol, 2009, 27:485-517.
21
Bush A, Saglani S. Management of severe asthma in children [J]. Lancet, 2010, 376(9743):814-825.
22
Woodruff PG, Modrek B, Choy DF, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma [J]. Am J Respir Crit Care Med, 2009, 180(5):388-395.
23
Wang L, Li Q, Wang L, et al. The role of Th17/IL-17 in the pathogenesis of primary nephrotic syndrome in children [J]. Kidney Blood Press Res, 2013, 37(4-5):332-345.
24
Zhao J, Lloyd CM, Noble A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling [J]. Mucosal Immunol, 2013, 6(2):335-346.
25
Vazquez-Tello A, Halwani R, Hamid Q, et al. Glucocorticoid receptor-beta up-regulation and steroid resistance induction by IL-17 and IL-23 cytokine stimulation in peripheral mononuclear cells [J]. J Clin Immunol, 2013, 33(2):466-478.
26
Tsitoura DC, Rothman PB. Enhancement of MEK/ERK signaling promotes glucocorticoid resistance in CD4+ T cells [J]. J Clin Invest, 2004, 113(4):619-627.
27
Liang Q, Guo L, Gogate S, et al. IL-2 and IL-4 stimulate MEK1 expression and contribute to T cell resistance against suppression by TGF-beta and IL-10 in asthma [J]. J Immunol, 2010, 185(10):5704-5713.
28
Besnard AG, Sabat R, Dumoutier L, et al. Dual role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A [J]. Am J Respir Crit Care Med, 2011, 183(9):1153-1163.
29
Cosmi L, Maggi L, Santarlasci V, et al. Identification of a novel subset of human circulating memory CD4T cells that produce both IL-17A and IL-4 [J]. J Allergy Clin Immunol, 2010, 125(1):222-230.
30
Takahashi K, Hirose K, Kawashima S, et al. IL-22 attenuates IL-25 production by lung epithelial cells and inhibits antigen-induced eosinophilic airway inflammation [J]. J Allergy Clin Immunol, 2011, 128(5):1067-1076.
31
Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines [J]. J Allergy Clin Immunol, 2001, 108(3):430-438.
32
Bellini A, Marini MA, Bianchetti L, et al. Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients [J]. Mucosal Immunol, 2012, 5(2):140-149.
33
Al-Muhsen S, Letuve S, Vazquez-Tello A, et al. Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils [J]. Respir Res, 2013, 14:34.
34
Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression [J]. J Allergy Clin Immunol, 2003, 111(6):1293-1298.
35
Chen Y, Thai P, Zhao YH, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop [J]. J Biol Chem, 2003, 278(19):17036-17043.
36
Fujisawa T, Velichko S, Thai P, et al. Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm [J]. J Immunol, 2009, 183(10):6236-6243.
37
Hashimoto K, Durbin JE, Zhou W, et al. Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL-17 levels [J]. J Allergy Clin Immunol, 2005, 116(3):550-557.
38
Girodet PO, Ozier A, Bara I, et al. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention [J]. Pharmacol Ther, 2011, 130(3):325-337.
39
Chang Y, Al-Alwan L, Risse PA, et al. Th17-associated cytokines promote human airway smooth muscle cell proliferation [J]. FASEB J, 2012, 26(12):5152-5160.
40
Chang Y, Al-Alwan L, Risse PA, et al. TH17 cytokines induce human airway smooth muscle cell migration [J]. J Allergy Clin Immunol, 2011, 127(4):1046-1053.
41
Kudo M, Melton AC, Chen C, et al. IL-17A produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction [J]. Nat Med, 2012, 18(4):547-554.
42
Loirand G, Sauzeau V, Pacaud P. Small G proteins in the cardiovascular system: physiological and pathological aspects [J]. Physiol Rev, 2013, 93(4):1659-1720.
43
Pain M, Bermudez O, Lacoste P, et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype [J]. Eur Respir Rev, 2014, 23(131):118-130.
44
Vittal R, Fan L, Greenspan DS, et al. IL-17 induces type V collagen overexpression and EMT via TGF-beta-dependent pathways in obliterative bronchiolitis [J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304(6):L401-L414.
45
Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma [J]. Am J Respir Crit Care Med, 2013, 188(11):1294-1302..
46
Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity [J]. Blood, 2013, 121(13):2402-2414.
47
Wang YH, Voo KS, Liu B, et al. A novel subset of CD4+ TH2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma [J]. J Exp Med, 2010, 207(11):2479-2491.
48
Corren J, Busse W, Meltzer EO, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma [J]. Am J Respir Crit Care Med, 2010, 181(8):788-796.
49
Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma [J]. N Engl J Med, 2011, 365(12):1088-1098.
50
Gauvreau GM, Boulet LP, Cockcroft DW, et al. Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma [J]. Am J Respir Crit Care Med, 2011, 183(8):1007-1014.
51
Nicholson GC, Kariyawasam HH, Tan AJ, et al. The effects of an anti-IL-13 mAb on cytokine levels and nasal symptoms following nasal allergen challenge [J]. J Allergy Clin Immunol, 2011, 128(4):800-807.
52
Singh D, Kane B, Molfino NA, et al. A phase 1 study evaluating the pharmacokinetics, safety and tolerability of repeat dosing with a human IL-13 antibody (CAT-354) in subjects with asthma [J]. BMC Pulm Med, 2010, 10:3.
53
Wenzel S, Wilbraham D, Fuller R, et al. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies [J]. Lancet, 2007, 370(9596):1422-1431.
54
Newcomb DC, Boswell MG, Zhou W, et al. Human TH17 cells express a functional IL-13 receptor and IL-13 attenuates IL-17A production [J]. J Allergy Clin Immunol, 2011, 127(4):1006-1013.
55
Newcomb DC, Boswell MG, Huckabee MM, et al. IL-13 regulates Th17 secretion of IL-17A in an IL-10-dependent manner [J]. J Immunol, 2012, 188(3):1027-1035.
56
Chen Z, Bai FF, Han L, et al. Targeting neutrophils in severe asthma via Siglec-9 [J]. Int Arch Allergy Immunol, 2018, 175(1-2):5-15.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[3] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[4] 杨皓媛, 龚杰, 邹青伟, 阮航. 哮喘孕妇的母婴不良妊娠结局研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 522-529.
[5] 娄丽丽, 刘瀚旻. 儿童狼疮性肾炎相关肾小管间质损伤的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 373-378.
[6] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[7] 张红凯, 崔建春. 从病理角度学习非哺乳期乳腺炎的分类分型及治疗[J]. 中华普通外科学文献(电子版), 2023, 17(04): 251-251.
[8] 徐瑜杰, 赵国栋. 晚期胃癌治疗方法的研究进展和挑战[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 451-455.
[9] 张荷连, 刘禹, 李丹妮, 彭茹, 杨彩蝶, 窦恒, 吴红梅. 心理障碍对重度哮喘患者的疾病控制及生活工作质量的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 589-591.
[10] 刘佳铭, 孙晓容, 文健, 何晓丽, 任茂玲. 有氧运动对成人哮喘肺功能、生活质量以及哮喘控制影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 592-595.
[11] 陈科春, 吴秋义, 李建, 周寅, 徐周. 基于不同中性粒细胞与淋巴细胞比值探讨机械取栓术后首次CT征象与患者预后的关系[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 215-221.
[12] 王庆, 夏婷婷. 未成熟粒细胞计数、C反应蛋白、中性粒细胞/淋巴细胞、降钙素原结合MCTSI评分在急性胆源性胰腺炎中的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 224-228.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[14] 陈捷, 白易, 刘金波, 刘欢, 赵娜, 赵红薇, 王宏宇. 中老年人群中性粒细胞和高密度脂蛋白比值与下肢动脉疾病的相关性[J]. 中华临床医师杂志(电子版), 2023, 17(04): 402-408.
[15] 连立超, 范子玥, 张昕, 白丽. 尿KIM-1、NGAL、RBP联合检测在慢性乙肝患者早期肾损伤中的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(04): 414-418.
阅读次数
全文


摘要