切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (07) : 405 -409. doi: 10.3877/cma.j.issn.1674-0785.2018.07.007

所属专题: 文献

综述

靶向Th17细胞免疫治疗中重度哮喘的作用
韩露1, 王楠1, 陈子1, 周林福2,()   
  1. 1. 210029 南京医科大学第一附属医院呼吸与危重症医学科
    2. 210029 南京医科大学第一附属医院呼吸与危重症医学科;210029 南京医科大学中西医结合研究所;215228 南京医科大学附属江苏盛泽医院(江苏省人民医院盛泽分院)呼吸内科
  • 收稿日期:2018-02-20 出版日期:2018-04-01
  • 通信作者: 周林福
  • 基金资助:
    国家重点研发计划(2018YFC1313600); 国家自然科学基金(81820108001、81670029、81370133、81170018); 江苏省医学重点人才项目(ZDRCA2016018); 江苏省333高层次人才工程第二层次培养对象(201605); 江苏省社会发展重点研发专项(BE2015651); 江苏省卫生计生委预防医学科研课题(Y2015026); 江苏省中医药科技项目(YB2015110); 苏州市科技计划项目(SYS201402); 江苏省研究生科研创新计划(KYCX171285)

Th17 cells as a potential target for treatment of moderate-to-severe asthma

Lu Han1, Nan Wang1, Zi Chen1, Linfu Zhou2,()   

  1. 1. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
    2. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Institute of Integrative Medicine of Nanjing Medical University, Nanjing 210029, China; Department of Respiratory Medicine, Jiangsu Shengze Hospital, Suzhou 215228, China
  • Received:2018-02-20 Published:2018-04-01
  • Corresponding author: Linfu Zhou
  • About author:
    Corresponding author: Zhou Linfu, Email:
引用本文:

韩露, 王楠, 陈子, 周林福. 靶向Th17细胞免疫治疗中重度哮喘的作用[J/OL]. 中华临床医师杂志(电子版), 2018, 12(07): 405-409.

Lu Han, Nan Wang, Zi Chen, Linfu Zhou. Th17 cells as a potential target for treatment of moderate-to-severe asthma[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(07): 405-409.

支气管哮喘(简称哮喘)是多种炎症细胞和炎性介质参与的慢性气道炎症性疾病。Thl/Th2免疫反应失衡是哮喘主要的发病机制,而嗜酸粒细胞性气道炎症和气道高反应性为哮喘的显著临床特征。Th17细胞通过活化和募集中性粒细胞,促进气道炎症发生发展,尤其与中重度哮喘密切相关。Th17细胞为中重度哮喘提供了潜在的治疗靶点。深入研究Th17细胞分化调控机制,有望为治疗中性粒细胞性哮喘带来新的愿景。

Bronchial asthma (asthma) is a chronic inflammatory airway disease involving a variety of inflammatory cells and inflammatory mediators. The imbalance of Thl/Th2 immune responses leads to airway hyperresponsiveness and eosinophilic airway inflammation. However, Th17 cells play a role in the pathophysiology of asthma through the recruitment and activation of neutrophils. Neutrophil infiltration is related to the occurrence of moderate-to-severe asthma. Therefore, Th17 cells may be a potential therapeutic target for asthma, especially moderate-to-severe asthma. Further studies to dissect the molecular mechanism of Th17 cell differentiation will contribute to developing a novel strategy for treatment of neutrophilic asthma.

1
Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins [J]. J Immunol, 1986, 136(7):2348-2357.
2
Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma [J]. Eur Respir J, 2014, 43(2):343-373.
3
Hartley R, Berair R, Brightling CE. Severe asthma: novel advances in the pathogenesis and therapy [J]. Pol Arch Med Wewn, 2014, 124(5):247-254.
4
Cosmi L, Maggi L, Santarlasci V, et al. T helper cells plasticity in inflammation [J]. Cytometry A, 2014, 85(1):36-42.
5
Talaat RM, Mohamed SF, Bassyouni IH, et al. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity [J]. Cytokine, 2015, 72(2):146-153.
6
Dolff S, Bijl M, Huitema MG, et al. Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus [J]. Clin Immunol, 2011, 141(2):197-204.
7
7Semik-Orzech A, Barczyk A, Pierzchala W. The role of interleukin 17A in inducing neutrophilic inflammation in the pulmonary tract [J]. Pol Merkur Lekarski, 2007, 22(129):163-168.
8
Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma [J]. Immunity, 2008, 28(1):29-39.
9
Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17T helper cells [J]. Cell, 2006, 126(6):1121-1133.
10
Zhang F, Fuss IJ, Yang Z, et al. Transcription of RORgammat in developing Th17 cells is regulated by E-proteins [J]. Mucosal Immunol, 2014, 7(3):521-532.
11
Solt L A, Kumar N, Nuhant P, et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand [J]. Nature, 2011, 472(7344):491-494.
12
Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation [J]. Semin Immunol, 2007, 19(6):409-417.
13
Nembrini C, Marsland BJ, Kopf M. IL-17-producing T cells in lung immunity and inflammation [J]. J Allergy Clin Immunol, 2009, 123(5):986-994, 995-996.
14
Pelletier M, Maggi L, Micheletti A, et al. Evidence for a cross-talk between human neutrophils and Th17 cells [J]. Blood, 2010, 115(2):335-343.
15
马超,任少敏,刘春枝. 不同严重程度支气管哮喘儿童诱导痰IL-17含量及炎症细胞百分比变化 [J]. 国际儿科学杂志, 2012, 39(3):316-318.
16
Irvin C, Zafar I, Good J, et al. Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma [J]. J Allergy Clin Immunol, 2014, 134(5):1175-1186.
17
McKinley L, Alcorn JF, Peterson A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice [J]. J Immunol, 2008, 181(6):4089-4097.
18
Newcomb DC, Boswell MG, Sherrill TP, et al. IL-17A induces signal transducers and activators of transcription-6-independent airway mucous cell metaplasia [J]. Am J Respir Cell Mol Biol, 2013, 48(6):711-716.
19
Ano S, Morishima Y, Ishii Y, et al. Transcription factors GATA-3 and RORgammat are important for determining the phenotype of allergic airway inflammation in a murine model of asthma [J]. J Immunol, 2013, 190(3):1056-1065.
20
Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells [J]. Annu Rev Immunol, 2009, 27:485-517.
21
Bush A, Saglani S. Management of severe asthma in children [J]. Lancet, 2010, 376(9743):814-825.
22
Woodruff PG, Modrek B, Choy DF, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma [J]. Am J Respir Crit Care Med, 2009, 180(5):388-395.
23
Wang L, Li Q, Wang L, et al. The role of Th17/IL-17 in the pathogenesis of primary nephrotic syndrome in children [J]. Kidney Blood Press Res, 2013, 37(4-5):332-345.
24
Zhao J, Lloyd CM, Noble A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling [J]. Mucosal Immunol, 2013, 6(2):335-346.
25
Vazquez-Tello A, Halwani R, Hamid Q, et al. Glucocorticoid receptor-beta up-regulation and steroid resistance induction by IL-17 and IL-23 cytokine stimulation in peripheral mononuclear cells [J]. J Clin Immunol, 2013, 33(2):466-478.
26
Tsitoura DC, Rothman PB. Enhancement of MEK/ERK signaling promotes glucocorticoid resistance in CD4+ T cells [J]. J Clin Invest, 2004, 113(4):619-627.
27
Liang Q, Guo L, Gogate S, et al. IL-2 and IL-4 stimulate MEK1 expression and contribute to T cell resistance against suppression by TGF-beta and IL-10 in asthma [J]. J Immunol, 2010, 185(10):5704-5713.
28
Besnard AG, Sabat R, Dumoutier L, et al. Dual role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A [J]. Am J Respir Crit Care Med, 2011, 183(9):1153-1163.
29
Cosmi L, Maggi L, Santarlasci V, et al. Identification of a novel subset of human circulating memory CD4T cells that produce both IL-17A and IL-4 [J]. J Allergy Clin Immunol, 2010, 125(1):222-230.
30
Takahashi K, Hirose K, Kawashima S, et al. IL-22 attenuates IL-25 production by lung epithelial cells and inhibits antigen-induced eosinophilic airway inflammation [J]. J Allergy Clin Immunol, 2011, 128(5):1067-1076.
31
Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines [J]. J Allergy Clin Immunol, 2001, 108(3):430-438.
32
Bellini A, Marini MA, Bianchetti L, et al. Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients [J]. Mucosal Immunol, 2012, 5(2):140-149.
33
Al-Muhsen S, Letuve S, Vazquez-Tello A, et al. Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils [J]. Respir Res, 2013, 14:34.
34
Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression [J]. J Allergy Clin Immunol, 2003, 111(6):1293-1298.
35
Chen Y, Thai P, Zhao YH, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop [J]. J Biol Chem, 2003, 278(19):17036-17043.
36
Fujisawa T, Velichko S, Thai P, et al. Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm [J]. J Immunol, 2009, 183(10):6236-6243.
37
Hashimoto K, Durbin JE, Zhou W, et al. Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL-17 levels [J]. J Allergy Clin Immunol, 2005, 116(3):550-557.
38
Girodet PO, Ozier A, Bara I, et al. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention [J]. Pharmacol Ther, 2011, 130(3):325-337.
39
Chang Y, Al-Alwan L, Risse PA, et al. Th17-associated cytokines promote human airway smooth muscle cell proliferation [J]. FASEB J, 2012, 26(12):5152-5160.
40
Chang Y, Al-Alwan L, Risse PA, et al. TH17 cytokines induce human airway smooth muscle cell migration [J]. J Allergy Clin Immunol, 2011, 127(4):1046-1053.
41
Kudo M, Melton AC, Chen C, et al. IL-17A produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction [J]. Nat Med, 2012, 18(4):547-554.
42
Loirand G, Sauzeau V, Pacaud P. Small G proteins in the cardiovascular system: physiological and pathological aspects [J]. Physiol Rev, 2013, 93(4):1659-1720.
43
Pain M, Bermudez O, Lacoste P, et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype [J]. Eur Respir Rev, 2014, 23(131):118-130.
44
Vittal R, Fan L, Greenspan DS, et al. IL-17 induces type V collagen overexpression and EMT via TGF-beta-dependent pathways in obliterative bronchiolitis [J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304(6):L401-L414.
45
Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma [J]. Am J Respir Crit Care Med, 2013, 188(11):1294-1302..
46
Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity [J]. Blood, 2013, 121(13):2402-2414.
47
Wang YH, Voo KS, Liu B, et al. A novel subset of CD4+ TH2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma [J]. J Exp Med, 2010, 207(11):2479-2491.
48
Corren J, Busse W, Meltzer EO, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma [J]. Am J Respir Crit Care Med, 2010, 181(8):788-796.
49
Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma [J]. N Engl J Med, 2011, 365(12):1088-1098.
50
Gauvreau GM, Boulet LP, Cockcroft DW, et al. Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma [J]. Am J Respir Crit Care Med, 2011, 183(8):1007-1014.
51
Nicholson GC, Kariyawasam HH, Tan AJ, et al. The effects of an anti-IL-13 mAb on cytokine levels and nasal symptoms following nasal allergen challenge [J]. J Allergy Clin Immunol, 2011, 128(4):800-807.
52
Singh D, Kane B, Molfino NA, et al. A phase 1 study evaluating the pharmacokinetics, safety and tolerability of repeat dosing with a human IL-13 antibody (CAT-354) in subjects with asthma [J]. BMC Pulm Med, 2010, 10:3.
53
Wenzel S, Wilbraham D, Fuller R, et al. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies [J]. Lancet, 2007, 370(9596):1422-1431.
54
Newcomb DC, Boswell MG, Zhou W, et al. Human TH17 cells express a functional IL-13 receptor and IL-13 attenuates IL-17A production [J]. J Allergy Clin Immunol, 2011, 127(4):1006-1013.
55
Newcomb DC, Boswell MG, Huckabee MM, et al. IL-13 regulates Th17 secretion of IL-17A in an IL-10-dependent manner [J]. J Immunol, 2012, 188(3):1027-1035.
56
Chen Z, Bai FF, Han L, et al. Targeting neutrophils in severe asthma via Siglec-9 [J]. Int Arch Allergy Immunol, 2018, 175(1-2):5-15.
[1] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[2] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[3] 杨柳, 陈佳, 孙雅娟, 陈娇, 谭明超, 龚明福. 抗中性粒细胞胞浆抗体相关性血管炎的胸部CT 及临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 744-749.
[4] 杨攀, 黄晓寒, 邓才霞, 周利航, 周向东, 罗虎. SMARCA4缺失的胸部未分化肿瘤临床特征及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 529-534.
[5] 白若靖, 郭军. 维生素D对肺部疾病临床意义的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 659-662.
[6] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[7] 何慧玲, 鲁祖斌, 冯嘉莉, 梁声强. 术前外周血NLR和PLR对结肠癌术后肝转移的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 682-687.
[8] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[9] 张少青, 吕玉风, 董海霞. 中性粒细胞百分比/白蛋白比值对维持性血液透析患者全因死亡的预测作用[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 321-326.
[10] 帖璇, 苏晓乐, 王利华. 抗中性粒细胞胞质抗体相关性血管炎治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 345-351.
[11] 孙文恺, 沈青, 杭丽, 张迎春. 纤维蛋白原与清蛋白比值、中性粒细胞与白蛋白比值、C反应蛋白与溃疡性结肠炎病情评估和预后的关系[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 426-431.
[12] 高静, 夏婷婷. 血清乳酸脱氢酶、中性粒细胞/淋巴细胞比值、血浆纤维蛋白原/前白蛋白比值对晚期结直肠癌患者姑息化疗效果与不良反应的评价[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 203-207.
[13] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[14] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
[15] 扈姝琴, 许红燕, 曹丹, 丁亚艳. 云平台视频管理在患儿重症哮喘中的应用及对应对方式的影响研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 218-223.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?