切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (07) : 410 -413. doi: 10.3877/cma.j.issn.1674-0785.2018.07.008

所属专题: 文献

综述

外泌体在乳腺癌发病过程及诊治中的研究进展
姚汉玉1, 张正权1, 胡云鹏1, 王雪莹1, 符德元1,()   
  1. 1. 225001 扬州,苏北人民医院甲乳外科
  • 收稿日期:2017-12-17 出版日期:2018-04-01
  • 通信作者: 符德元
  • 基金资助:
    国家自然科学基金资助项目(81172508)

Role of exosomes in carcinogenesis and diagnosis of breast cancer

Hanyu Yao1, Zhengquan Zhang1, Yunpeng Hu1, Xueying Wang1, Deyuan Fu1,()   

  1. 1. Department of Thyroid and Breast Surgery, Yangzhou Subei People Hospital, Yangzhou 225001, China
  • Received:2017-12-17 Published:2018-04-01
  • Corresponding author: Deyuan Fu
  • About author:
    Corresponding author: Fu Deyuan, Email:
引用本文:

姚汉玉, 张正权, 胡云鹏, 王雪莹, 符德元. 外泌体在乳腺癌发病过程及诊治中的研究进展[J]. 中华临床医师杂志(电子版), 2018, 12(07): 410-413.

Hanyu Yao, Zhengquan Zhang, Yunpeng Hu, Xueying Wang, Deyuan Fu. Role of exosomes in carcinogenesis and diagnosis of breast cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(07): 410-413.

乳腺癌是女性最常见的恶性肿瘤,其发病机制十分复杂。最新研究表明,外泌体与乳腺癌等多种肿瘤的发病过程密切相关,逐渐成为肿瘤研究的新热点。外泌体是循环囊泡的一种,能通过介导细胞间信号通信,影响乳腺癌等肿瘤的发生、发展、侵袭和转移,在肿瘤的发病过程和临床诊治等方面具有重要的研究价值。因此,本文就外泌体的结构与功能,外泌体在乳腺癌的发生发展、诊断和治疗中的作用作一综述,以期更好地理解乳腺癌的发病机制、为乳腺癌的临床诊治提供新思路。

Breast cancer is the most common malignant tumor in women, which has a complex pathogenesis. According to the latest research, the role of exosomes in tumorigenesis has become the focus of research. Exosomes, one of the circulating vesicles, can promote the occurrence, development, invasion and metastasis of breast cancer and other tumors through exosome-mediated intercellular communication, which shows great value in understanding the process of carcinogenesis and clinical diagnosis and treatment. Therefore, we review the structure and function of exosomes and their role in the tumorigenesis, diagnosis and treatment of breast cancer, in order to help clinicians better understand the pathogenesis of breast cancer and provide a new clue to the clinical diagnosis and treatment of this malignancy.

1
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016 [J]. CA Cancer, 2016, 66(1):7-30.
2
Chen W, Zheng R, Baade PD, et a1. Cancer statistics in China, 2015 [J]. CA Cancer, 2016, 66(2):115-132.
3
Petrakis IE, Paraskakis S. Breast cancer in the elderly [J]. Arch gerontol geriatr, 2010, 50(2):179-184.
4
Jia Y, Chen Y, Wang Q, et al. Exosome: emerging biomarker in breast cancer [J]. Oncotarget, 2017, 8(25):41717-41733.
5
Lobb RJ, van Amerongen R, Wiegmans A, et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance [J]. Int J Cancer, 2017, 141(3):614-620.
6
Franzen CA, Blackwell RH, Foreman KE, et al. Urinary exosomes: the potential for biomarker utility, intercellular signaling, and therapeutics in urologic malignancy [J]. J Urol, 2016, 195(5):1331-1339.
7
Tang XJ, Sun XY, Huang KM, et al. Therapeutic potential of CAR—T cell-derived exosomes: a cell-free modality for targeted cancer therapy [J]. Oncotarget, 2015, 6(42):44179-44190.
8
Nikitina IG, Sabirova EIu, Karpov VL, et al. The role of exosomes and microvesicles in carcinogenesis [J]. Mol Biol(Mosk). 2013, 47(5):767-773.
9
Sun Y, Liu J. Potential of cancer cell-derived exosomes in clinical application:a review of recent research advances [J]. Clin Ther, 2014, 36(6):863-872.
10
O′Brien K, Rani S, Corcoran C, et al. Exosomes from triple—negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells [J]. Eur J Cancer, 2013, 49(8):1845-1859.
11
Keller S, König AK, Marmé F, et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes [J]. Cancer Lett, 2009, 278(1):73-81.
12
Rodríguez M, Silva J, Herrera A, et al. Exosomesenriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer [J]. Oncotarget, 2015, 6(38):40575-40587.
13
Kannan A, Wells RB, Sivakumar S, et al. Mitochondrial reprogramming regulates breast cancer progression [J]. Clin Cancer Res, 2016, 22(13):3348-3360.
14
Harris DA, Patel SH, Gucek M, et al. Exosomes released from breast cancer carcinomas stimulate cell movement [J]. PLoS One, 2015, 10(3):e0117495.
15
Zhou W, Fong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis [J]. Cancer Cell, 2014, 25(4):501-515.
16
Yang M, Chen J, Su F, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells [J]. Mol Cancer, 2011, 10:117.
17
Singh R, Pochampally R, Watabe K, et al. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer [J]. Mol Cancer, 2014, 13:256.
18
Shi J, Ren Y, Zhen L, et al. Exosomes from breast cancer cells stimulate proliferation and inhibit apoptosis of CD133+ cancer cells in vitro [J]. Mol Med Rep, 2015, 11(1):405-409.
19
Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model [J]. Mol Cell Biochem, 2013, 383(1-2):13-20.
20
Gorczynski RM, Erin N, Zhu F. Serum-derived exosomes from mice with highly metastatic breast cancer transfer increased metastatic capacity to a poorly metastatic tumor [J]. Cancer Med, 2016, 5(2):325-336.
21
Chen WX, Liu XM, Lv MM, et al. Exosomes from drugresistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs [J]. PLoS One, 2014, 9(4):e95240.
22
Chen WX, Cai YQ, Lv MM, et al. Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs [J]. Tumour Biol, 2014, 35(10):9649-9659.
23
Yu DD, Wu Y, Zhang XH, et al. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222 [J]. Tumour Biol, 2016, 37(3):3227-3235.
24
Lv MM, Zhu XY, Chen WX, et al. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein [J]. Tumour Biol, 2014, 35(11):10773-10779.
25
Ciravolo V, Huber V, Ghedini GC, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy [J]. J Cell Physiol, 2012, 227(2):658667.
26
Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers [J]. Nat Cell Biol, 2008, 10(12):1470-1476.
27
Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET [J]. Nat Med, 2012, 18(6):883-891.
28
Lan CS, Wong DT. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell--derived exosome-like mierovesieles in vitro [J]. PLoS One, 2012, 7(3):e33037.
29
Khan S, Bennit HF, Turay D, et al. Early diagnostic value of survivin and its alternative splice variants in breast cancer [J]. BMC Cancer, 2014, 14:176.
30
Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer [J]. Nature, 2015, 523(7559):177-182.
31
Roberg-Larsen H, Lund K, Seterdal KE, et al. Mass spectrometric detection of 27-hydroxycholesterol in breast cancer exosomes [J]. J Steroid Biochem Mol Biol, 2017, 169:22-28.
32
盛湲,李恒宇. 外泌体:乳腺癌精确诊疗的新热点 [J/CD]. 中华乳腺病杂志(电子版), 2016, 10(3):133-136.
33
Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy [J]. Biomaterials, 2014, 35(7):2383-2390.
34
Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells [J]. Mol Ther, 2013, 21(1):185-191.
35
Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models [J]. Nanomedicine(Lond), 2016, 11(18):2431-2441.
36
Marleau AM, Chen CS, Joyce JA, et al. Exosome removal as a therapeutic adjuvant in cancer [J]. J Transl Med, 2012, 10:134.
37
Tan A, De La Peña H, Seifalian AM. The application of exosomes as a nanoscale cancer vaccine [J]. Int J Nanomedicine, 2010, 5:889-900.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[4] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[5] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[8] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[9] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[10] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[11] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要